This book is the first of two volumes providing comprehensive coverage of the fundamental knowledge and technology of composite materials. It covers a variety of design, fabrication and characterization methods as applied to composite materials, particularly focusing on the fiber-reinforcement mechanism and related examples. It is ideal for graduate students, researchers, and professionals in the fields of Materials Science and Engineering, and Mechanical Engineering.
This volume focuses on quasilinear elliptic differential equations of degenerate type, evolution variational inequalities, and multidimensional hysteresis. It serves both as a survey of results in the field, and as an introductory text for non-specialists interested in related problems.
In two volumes, this book provides comprehensive coverage of the fundamental knowledge and technology of composite materials. This second volume reviews the research developments of a number of widely studied composite materials with different matrices. It also describes the related process technology that is necessary for a successful production. This work is ideal for graduate students, researchers, and professionals in the fields of materials science and engineering, as well as mechanical engineering.
The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.
A widely used basic text by two recognized authorities. A unified and disciplined approach; advanced concepts reduced to easy-to-use charts, formulas and numerical examples.
Composite materials have been well developed to meet the challenges of high-performing material properties targeting engineering and structural applications. The ability of composite materials to absorb stresses and dissipate strain energy is vastly superior to that of other materials such as polymers and ceramics, and thus they offer engineers many mechanical, thermal, chemical and damage-tolerance advantages with limited drawbacks such as brittleness. Composite Materials: Manufacturing, Properties and Applications presents a comprehensive review of current status and future directions, latest technologies and innovative work, challenges and opportunities for composite materials. The chapters present latest advances and comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites. The book targets researchers in the field of advanced composite materials and ceramics, students of materials science and engineering at the postgraduate level, as well as material engineers and scientists working in industrial R& D sectors for composite material manufacturing. - Comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites - Features latest advances in terms of mechanical properties and other material parameters which are essential for designers and engineers in the composite and composite reinforcement manufacturing industry, as well as all those with an academic research interest in the subject - Offers a good platform for end users to refer to the latest technologies and topics fitting into specific applications and specific methods to tackle manufacturing or material processing issues in relation to different types of composite materials
Focusing on the relationship between structure and properties, this is a well-balanced treatment of the mechanics and the materials science of composites, while not neglecting the importance of processing. This updated second edition contains new chapters on fatigue and creep of composites, and describes in detail how the various reinforcements, the materials in which they are embedded, and of the interfaces between them, control the properties of the composite materials at both the micro- and macro-levels. Extensive use is made of micrographs and line drawings, and examples of practical applications in various fields are given throughout the book, together with extensive references to the literature. Intended for use in graduate and upper-division undergraduate courses, this book will also prove a useful reference for practising engineers and researchers in industry and academia.
In recent decades, composite materials have developed very rapidly and the applications continue to be of increasing importance. Composite Materials Engineering, the three-volume reference book, offers an integrated and completely up-to-date coverage on composite materials. Vol. 1 provides an introduction and the fundamentals of composite materials, covering reinforcements of composites, polymer matrix materials, textile composites, interfaces of composites and mechanics and the design of composites. Vol. 2 focuses on several important composite materials and provides detailed descriptions about the properties, the production technologies and the applications of these composite materials, including advanced polymer matrix composites, thermoplastic polymer matrix composites, metal matrix composites, etc. Vol. 3 mainly focuses on key points and know-how regarding the application of composite materials, including the design and analysis of composite structures, performance testing, characterization and quality control of composites. In the final chapter, there are overviews of several new types of composite materials as well as the recent development trends. This book will be of value to scientists, engineers and researchers in advanced materials and manufacturing engineering as a comprehensive reference book. It also will provide an introduction for postgraduate students in materials science and engineering.
This book deals with all aspects of advanced composite materials; what they are, where they are used, how they are made, their properties, how they are designed and analyzed, and how they perform in-service. It covers both continuous and discontinuous fiber composites fabricated from polymer, metal, and ceramic matrices, with an emphasis on continuous fiber polymer matrix composites.