Handbook of Convex Geometry

Handbook of Convex Geometry

Author: Bozzano G Luisa

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 803

ISBN-13: 0080934390

DOWNLOAD EBOOK

Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.


Combinatorics

Combinatorics

Author: Russell Merris

Publisher: John Wiley & Sons

Published: 2003-08-15

Total Pages: 580

ISBN-13: 047126296X

DOWNLOAD EBOOK

A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition: Lively and engaging writing style Timely and appropriate examples Numerous well-chosen exercises Flexible modular format Optional sections and appendices Highlights of Second Edition enhancements: Smoothed and polished exposition, with a sharpened focus on key ideas Expanded discussion of linear codes New optional section on algorithms Greatly expanded hints and answers section Many new exercises and examples


Computational Oriented Matroids

Computational Oriented Matroids

Author: Jürgen Bokowski

Publisher: Cambridge University Press

Published: 2006-05-08

Total Pages: 294

ISBN-13: 0521849306

DOWNLOAD EBOOK

Oriented matroids play the role of matrices in discrete geometry, when metrical properties, such as angles or distances, are neither required nor available. Thus they are of great use in such areas as graph theory, combinatorial optimization and convex geometry. The variety of applications corresponds to the variety of ways they can be defined. Each of these definitions corresponds to a differing data structure for an oriented matroid, and handling them requires computational support, best realised through a functional language. Haskell is used here, and, for the benefit of readers, the book includes a primer on it. The combination of concrete applications and computation, the profusion of illustrations, many in colour, and the large number of examples and exercises make this an ideal introductory text on the subject. It will also be valuable for self-study for mathematicians and computer scientists working in discrete and computational geometry.


Physics from Symmetry

Physics from Symmetry

Author: Jakob Schwichtenberg

Publisher: Springer

Published: 2017-12-01

Total Pages: 294

ISBN-13: 3319666312

DOWNLOAD EBOOK

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.