Combinatorial Methods

Combinatorial Methods

Author: Alexander Mikhalev

Publisher: Springer Science & Business Media

Published: 2004

Total Pages: 336

ISBN-13: 9780387405629

DOWNLOAD EBOOK

The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).


Combinatorial Algebraic Topology

Combinatorial Algebraic Topology

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 416

ISBN-13: 9783540730514

DOWNLOAD EBOOK

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.


Combinatorial Methods in Topology and Algebraic Geometry

Combinatorial Methods in Topology and Algebraic Geometry

Author: John R. Harper

Publisher: American Mathematical Soc.

Published: 1985

Total Pages: 372

ISBN-13: 9780821850398

DOWNLOAD EBOOK

A survey of the areas where combinatorial methods have proven especially fruitful: topology and combinatorial group theory, knot theory, 3-manifolds, homotopy theory and infinite dimensional topology, and four manifolds and algebraic surfaces.


Combinatorial Commutative Algebra

Combinatorial Commutative Algebra

Author: Ezra Miller

Publisher: Springer Science & Business Media

Published: 2005-06-21

Total Pages: 442

ISBN-13: 9780387237077

DOWNLOAD EBOOK

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs


Combinatorial Structures in Algebra and Geometry

Combinatorial Structures in Algebra and Geometry

Author: Dumitru I. Stamate

Publisher: Springer Nature

Published: 2020-09-01

Total Pages: 182

ISBN-13: 3030521117

DOWNLOAD EBOOK

This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).


Combinatorial Aspects of Commutative Algebra and Algebraic Geometry

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry

Author: Gunnar Fløystad

Publisher: Springer Science & Business Media

Published: 2011-05-16

Total Pages: 186

ISBN-13: 3642194923

DOWNLOAD EBOOK

The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.


Combinatorial Algebraic Geometry

Combinatorial Algebraic Geometry

Author: Gregory G. Smith

Publisher: Springer

Published: 2017-11-17

Total Pages: 391

ISBN-13: 1493974866

DOWNLOAD EBOOK

This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.


Polynomial Methods in Combinatorics

Polynomial Methods in Combinatorics

Author: Larry Guth

Publisher: American Mathematical Soc.

Published: 2016-06-10

Total Pages: 287

ISBN-13: 1470428903

DOWNLOAD EBOOK

This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.


Algebraic Combinatorics and Coinvariant Spaces

Algebraic Combinatorics and Coinvariant Spaces

Author: Francois Bergeron

Publisher: CRC Press

Published: 2009-07-06

Total Pages: 227

ISBN-13: 1439865078

DOWNLOAD EBOOK

Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and


Combinatorial Methods

Combinatorial Methods

Author: Vladimir Shpilrain

Publisher: Springer Science & Business Media

Published: 2012-11-12

Total Pages: 322

ISBN-13: 038721724X

DOWNLOAD EBOOK

The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century.