Geometric Graphs and Arrangements

Geometric Graphs and Arrangements

Author: Stefan Felsner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 179

ISBN-13: 3322803031

DOWNLOAD EBOOK

Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.


Thirty Essays on Geometric Graph Theory

Thirty Essays on Geometric Graph Theory

Author: János Pach

Publisher: Springer Science & Business Media

Published: 2012-12-15

Total Pages: 610

ISBN-13: 1461401100

DOWNLOAD EBOOK

In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.


Combinatorial Geometry

Combinatorial Geometry

Author: János Pach

Publisher: John Wiley & Sons

Published: 2011-10-18

Total Pages: 376

ISBN-13: 1118031369

DOWNLOAD EBOOK

A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more


Combinatorics and Graph Theory

Combinatorics and Graph Theory

Author: John Harris

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 392

ISBN-13: 0387797114

DOWNLOAD EBOOK

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.


Combinatorics and Finite Geometry

Combinatorics and Finite Geometry

Author: Steven T. Dougherty

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 374

ISBN-13: 3030563952

DOWNLOAD EBOOK

This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.


Combinatorial Geometry with Applications to Field Theory

Combinatorial Geometry with Applications to Field Theory

Author: Linfan Mao

Publisher: Infinite Study

Published: 2009

Total Pages: 499

ISBN-13: 1599731002

DOWNLOAD EBOOK

This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology. All of these are valuable for researchers in combinatorics, topology, differential geometry, gravitational or quantum fields.


Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization

Author: Martin Grötschel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 3642978819

DOWNLOAD EBOOK

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.


Counting and Configurations

Counting and Configurations

Author: Jiri Herman

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 402

ISBN-13: 1475739257

DOWNLOAD EBOOK

This book presents methods of solving problems in three areas of elementary combinatorial mathematics: classical combinatorics, combinatorial arithmetic, and combinatorial geometry. Brief theoretical discussions are immediately followed by carefully worked-out examples of increasing degrees of difficulty and by exercises that range from routine to rather challenging. The book features approximately 310 examples and 650 exercises.


Combinatorial Geometry and Graph Theory

Combinatorial Geometry and Graph Theory

Author: Jin Akiyama

Publisher: Springer Science & Business Media

Published: 2005-01-31

Total Pages: 234

ISBN-13: 3540244018

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003, held in Bandung, Indonesia in September 2003. The 23 revised papers presented were carefully selected during two rounds of reviewing and improvement. Among the topics covered are coverings, convex polygons, convex polyhedra, matchings, graph colourings, crossing numbers, subdivision numbers, combinatorial optimization, combinatorics, spanning trees, various graph characteristica, convex bodies, labelling, Ramsey number estimation, etc.