Classification of Radial Solutions Arising in the Study of Thermal Structures with Thermal Equilibrium or No Flux at the Boundary

Classification of Radial Solutions Arising in the Study of Thermal Structures with Thermal Equilibrium or No Flux at the Boundary

Author: Alfonso Castro

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 87

ISBN-13: 0821847260

DOWNLOAD EBOOK

The authors provide a complete classification of the radial solutions to a class of reaction diffusion equations arising in the study of thermal structures such as plasmas with thermal equilibrium or no flux at the boundary. In particular, their study includes rapidly growing nonlinearities, that is, those where an exponent exceeds the critical exponent. They describe the corresponding bifurcation diagrams and determine existence and uniqueness of ground states, which play a central role in characterizing those diagrams. They also provide information on the stability-unstability of the radial steady states.


Contributions to Nonlinear Elliptic Equations and Systems

Contributions to Nonlinear Elliptic Equations and Systems

Author: Alexandre N. Carvalho

Publisher: Birkhäuser

Published: 2015-11-14

Total Pages: 434

ISBN-13: 3319199021

DOWNLOAD EBOOK

This volume of contributions pays tribute to the life and work of Djairo Guedes de Figueiredo on the occasion of his 80th birthday. The articles it contains were born out of the ICMC Summer Meeting on Differential Equations – 2014 Chapter, also dedicated to de Figueiredo and held at the Universidade de São Paulo at São Carlos, Brazil from February 3-7, 2014. The contributing authors represent a group of international experts in the field and discuss recent trends and new directions in nonlinear elliptic partial differential equations and systems. Djairo Guedes de Figueiredo has had a very active scientific career, publishing 29 monographs and over one hundred research articles. His influence on Brazilian mathematics has made him one of the pillars of the subject in that country. He had a major impact on the development of analysis, especially in its application to nonlinear elliptic partial differential equations and systems throughout the entire world. The articles collected here pay tribute to him and his legacy and are intended for graduate students and researchers in mathematics and related areas who are interested in nonlinear elliptic partial differential equations and systems.


Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates

Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates

Author: Jun Kigami

Publisher: American Mathematical Soc.

Published: 2012-02-22

Total Pages: 145

ISBN-13: 082185299X

DOWNLOAD EBOOK

Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviors of analytic objects, the original metric of the space may not be the best one. Every now and then one can construct a better metric which is somehow ``intrinsic'' with respect to the analytic structure and under which asymptotic behaviors of the analytic objects have nice expressions. The problem is when and how one can find such a metric. In this paper, the author considers the above problem in the case of stochastic processes associated with Dirichlet forms derived from resistance forms. The author's main concerns are the following two problems: (I) When and how to find a metric which is suitable for describing asymptotic behaviors of the heat kernels associated with such processes. (II) What kind of requirement for jumps of a process is necessary to ensure good asymptotic behaviors of the heat kernels associated with such processes.


The Internally 4-Connected Binary Matroids with No $M(K_{3,3})$-Minor

The Internally 4-Connected Binary Matroids with No $M(K_{3,3})$-Minor

Author: Dillon Mayhew

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 110

ISBN-13: 0821848267

DOWNLOAD EBOOK

The authors give a characterization of the internally $4$-connected binary matroids that have no minor isomorphic to $M(K_{3,3})$. Any such matroid is either cographic, or is isomorphic to a particular single-element extension of the bond matroid of a cubic or quartic Mobius ladder, or is isomorphic to one of eighteen sporadic matroids.


Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case

Author: Martin C. Olsson

Publisher: American Mathematical Soc.

Published: 2011-02-07

Total Pages: 170

ISBN-13: 082185240X

DOWNLOAD EBOOK

The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.


Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates

Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates

Author: Steve Hofmann

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 91

ISBN-13: 0821852388

DOWNLOAD EBOOK

Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.


On the Shape of a Pure $O$-Sequence

On the Shape of a Pure $O$-Sequence

Author: Mats Boij

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 93

ISBN-13: 0821869108

DOWNLOAD EBOOK

A monomial order ideal is a finite collection X of (monic) monomials such that, whenever M∈X and N divides M, then N∈X. Hence X is a poset, where the partial order is given by divisibility. If all, say t t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h_=(h0=1,h1,...,he), counting the monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicomplexes, or, in the language of commutative algebra, as the h h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of the early works of Stanley's in this area, and have since played a significant role in at least three different disciplines: the study of simplicial complexes and their f f-vectors, the theory of level algebras, and the theory of matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences.


$n$-Harmonic Mappings between Annuli

$n$-Harmonic Mappings between Annuli

Author: Tadeusz Iwaniec

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 120

ISBN-13: 0821853570

DOWNLOAD EBOOK

Iwaniec and Onninen (both mathematics, Syracuse U., US) address concrete questions regarding energy minimal deformations of annuli in Rn. One novelty of their approach is that they allow the mappings to slip freely along the boundaries of the domains, where it is most difficult to establish the existence, uniqueness, and invertibility properties of the extremal mappings. At the core of the matter, they say, is the underlying concept of free Lagrangians. After an introduction, they cover in turn principal radial n-harmonics, and the n-harmonic energy. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).


General Relativistic Self-Similar Waves that Induce an Anomalous Acceleration into the Standard Model of Cosmology

General Relativistic Self-Similar Waves that Induce an Anomalous Acceleration into the Standard Model of Cosmology

Author: Joel Smoller

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 82

ISBN-13: 0821853589

DOWNLOAD EBOOK

The authors prove that the Einstein equations for a spherically symmetric spacetime in Standard Schwarzschild Coordinates (SSC) close to form a system of three ordinary differential equations for a family of self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, they prove that the family reduces to an implicitly defined one-parameter family of distinct spacetimes determined by the value of a new acceleration parameter $a$, such that $a=1$ corresponds to the Standard Model. The authors prove that all of the self-similar spacetimes in the family are distinct from the non-critical $k\neq0$ Friedmann spacetimes, thereby characterizing the critical $k=0$ Friedmann universe as the unique spacetime lying at the intersection of these two one-parameter families. They then present a mathematically rigorous analysis of solutions near the singular point at the center, deriving the expansion of solutions up to fourth order in the fractional distance to the Hubble Length. Finally, they use these rigorous estimates to calculate the exact leading order quadratic and cubic corrections to the redshift vs luminosity relation for an observer at the center.