Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2013-03-09

Total Pages: 479

ISBN-13: 3034875096

DOWNLOAD EBOOK

After the book "Basic Operator Theory" by Gohberg-Goldberg was pub lished, we, that is the present authors, intended to continue with another book which would show the readers the large variety of classes of operators and the important role they play in applications. The book was planned to be of modest size, but due to the profusion of results in this area of analysis, the number of topics grew larger than ex pected. Consequently, we decided to divide the material into two volumes - the first volume being presented now. During the past years, courses and seminars were given at our respective in stitutions based on parts of the texts. These were well received by the audience and enabled us to make appropriate choices for the topics and presentation for the two vol umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections. We are now aware that the Basic Operator Theory book should be revised so that it may suitably fit in with our present volumes. This revision is planned to be the last step of an induction and not the first.


Traces and Determinants of Linear Operators

Traces and Determinants of Linear Operators

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 261

ISBN-13: 303488401X

DOWNLOAD EBOOK

This book is dedicated to a theory of traces and determinants on embedded algebras of linear operators, where the trace and determinant are extended from finite rank operators by a limit process. The self-contained material should appeal to a wide group of mathematicians and engineers, and is suitable for teaching.


Linear Operators in Hilbert Spaces

Linear Operators in Hilbert Spaces

Author: Joachim Weidmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1461260272

DOWNLOAD EBOOK

This English edition is almost identical to the German original Lineare Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applica tions of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators.


Basic Classes of Linear Operators

Basic Classes of Linear Operators

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 428

ISBN-13: 3034879806

DOWNLOAD EBOOK

A comprehensive graduate textbook that introduces functional analysis with an emphasis on the theory of linear operators and its application to differential equations, integral equations, infinite systems of linear equations, approximation theory, and numerical analysis. As a textbook designed for senior undergraduate and graduate students, it begins with the geometry of Hilbert spaces and proceeds to the theory of linear operators on these spaces including Banach spaces. Presented as a natural continuation of linear algebra, the book provides a firm foundation in operator theory which is an essential part of mathematical training for students of mathematics, engineering, and other technical sciences.


Semigroups of Linear Operators

Semigroups of Linear Operators

Author: David Applebaum

Publisher: Cambridge University Press

Published: 2019-08-15

Total Pages: 235

ISBN-13: 1108483097

DOWNLOAD EBOOK

Provides a graduate-level introduction to the theory of semigroups of operators.


Basic Operator Theory

Basic Operator Theory

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2013-12-01

Total Pages: 291

ISBN-13: 1461259851

DOWNLOAD EBOOK

rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter.


Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces

Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces

Author: L. Molnár

Publisher: Springer

Published: 2006-11-15

Total Pages: 243

ISBN-13: 3540399461

DOWNLOAD EBOOK

The territory of preserver problems has grown continuously within linear analysis. This book presents a cross-section of the modern theory of preservers on infinite dimensional spaces (operator spaces and function spaces) through the author's corresponding results. Special emphasis is placed on preserver problems concerning some structures of Hilbert space operators which appear in quantum mechanics. In addition, local automorphisms and local isometries of operator algebras and function algebras are discussed in detail.


Linear Operators Set

Linear Operators Set

Author: Nelson Dunford

Publisher: Wiley

Published: 2009-05-26

Total Pages: 2648

ISBN-13: 9780470555613

DOWNLOAD EBOOK

This set features: Linear Operators, Part 1, General Theory (978-0-471-60848-6), Linear Operators, Part 2, Spectral Theory, Self Adjoint Operators in Hilbert Space (978-0-471-60847-9), and Linear Operators, Part 3, Spectral Operators (978-0-471-60846-2), all by Neilson Dunford and Jacob T. Schwartz.


Selected Topics in Complex Analysis

Selected Topics in Complex Analysis

Author: Vladimir Ya. Eiderman

Publisher: Springer Science & Business Media

Published: 2005-04-20

Total Pages: 240

ISBN-13: 9783764372514

DOWNLOAD EBOOK

This volume opens with a paper by V.P. Havin that presents a comprehensive survey of the work of mathematician S.Ya. Khavinson. It includes a complete bibliography, previously unpublished, of 163 items, and twelve peer-reviewed research and expository papers by leading mathematicians, including the joint paper by Khavinson and T.S. Kuzina. The emphasis is on the usage of tools from functional analysis, potential theory, algebra, and topology.


One-Dimensional Linear Singular Integral Equations

One-Dimensional Linear Singular Integral Equations

Author: I. Gohberg

Publisher: Springer Science & Business Media

Published: 1992-01-01

Total Pages: 280

ISBN-13: 9783764325848

DOWNLOAD EBOOK

This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.