Modeling of Chemical Kinetics and Reactor Design

Modeling of Chemical Kinetics and Reactor Design

Author: A. Kayode Coker

Publisher: Gulf Professional Publishing

Published: 2001-07-26

Total Pages: 1132

ISBN-13: 9780884154815

DOWNLOAD EBOOK

This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.


Reaction Kinetics and Reactor Design, Second Edition

Reaction Kinetics and Reactor Design, Second Edition

Author: John B. Butt

Publisher: CRC Press

Published: 2000-01-03

Total Pages: 760

ISBN-13: 9780824777227

DOWNLOAD EBOOK

This text combines a description of the origin and use of fundamental chemical kinetics through an assessment of realistic reactor problems with an expanded discussion of kinetics and its relation to chemical thermodynamics. It provides exercises, open-ended situations drawing on creative thinking, and worked-out examples. A solutions manual is also available to instructors.


Introduction to Chemical Engineering Kinetics and Reactor Design

Introduction to Chemical Engineering Kinetics and Reactor Design

Author: Charles G. Hill

Publisher: John Wiley & Sons

Published: 2014-05-27

Total Pages: 580

ISBN-13: 1118368258

DOWNLOAD EBOOK

The Second Edition features new problems that engage readers in contemporary reactor design Highly praised by instructors, students, and chemical engineers, Introduction to Chemical Engineering Kinetics & Reactor Design has been extensively revised and updated in this Second Edition. The text continues to offer a solid background in chemical reaction kinetics as well as in material and energy balances, preparing readers with the foundation necessary for success in the design of chemical reactors. Moreover, it reflects not only the basic engineering science, but also the mathematical tools used by today’s engineers to solve problems associated with the design of chemical reactors. Introduction to Chemical Engineering Kinetics & Reactor Design enables readers to progressively build their knowledge and skills by applying the laws of conservation of mass and energy to increasingly more difficult challenges in reactor design. The first one-third of the text emphasizes general principles of chemical reaction kinetics, setting the stage for the subsequent treatment of reactors intended to carry out homogeneous reactions, heterogeneous catalytic reactions, and biochemical transformations. Topics include: Thermodynamics of chemical reactions Determination of reaction rate expressions Elements of heterogeneous catalysis Basic concepts in reactor design and ideal reactor models Temperature and energy effects in chemical reactors Basic and applied aspects of biochemical transformations and bioreactors About 70% of the problems in this Second Edition are new. These problems, frequently based on articles culled from the research literature, help readers develop a solid understanding of the material. Many of these new problems also offer readers opportunities to use current software applications such as Mathcad and MATLAB®. By enabling readers to progressively build and apply their knowledge, the Second Edition of Introduction to Chemical Engineering Kinetics & Reactor Design remains a premier text for students in chemical engineering and a valuable resource for practicing engineers.


Chemical Reactor Design and Control

Chemical Reactor Design and Control

Author: William L. Luyben

Publisher: John Wiley & Sons

Published: 2007-07-16

Total Pages: 425

ISBN-13: 0470134909

DOWNLOAD EBOOK

Chemical Reactor Design and Control uses process simulators like Matlab®, Aspen Plus, and Aspen Dynamics to study the design of chemical reactors and their dynamic control. There are numerous books that focus on steady-state reactor design. There are no books that consider practical control systems for real industrial reactors. This unique reference addresses the simultaneous design and control of chemical reactors. After a discussion of reactor basics, it: Covers three types of classical reactors: continuous stirred tank (CSTR), batch, and tubular plug flow Emphasizes temperature control and the critical impact of steady-state design on the dynamics and stability of reactors Covers chemical reactors and control problems in a plantwide environment Incorporates numerous tables and shows step-by-step calculations with equations Discusses how to use process simulators to address diverse issues and types of operations This is a practical reference for chemical engineering professionals in the process industries, professionals who work with chemical reactors, and students in undergraduate and graduate reactor design, process control, and plant design courses.


Transport Phenomena for Chemical Reactor Design

Transport Phenomena for Chemical Reactor Design

Author: Laurence A. Belfiore

Publisher: John Wiley & Sons

Published: 2003-04-11

Total Pages: 912

ISBN-13: 0471202754

DOWNLOAD EBOOK

Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp. Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including: Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design.


Chemical Reactor Analysis and Design

Chemical Reactor Analysis and Design

Author: Gilbert F. Froment

Publisher:

Published: 1990-01-16

Total Pages: 706

ISBN-13:

DOWNLOAD EBOOK

This is the Second Edition of the standard text on chemical reaction engineering, beginning with basic definitions and fundamental principles and continuing all the way to practical applications, emphasizing real-world aspects of industrial practice. The two main sections cover applied or engineering kinetics, reactor analysis and design. Includes updated coverage of computer modeling methods and many new worked examples. Most of the examples use real kinetic data from processes of industrial importance.


Principles of Chemical Reactor Analysis and Design

Principles of Chemical Reactor Analysis and Design

Author: Uzi Mann

Publisher: John Wiley & Sons

Published: 2009-03-30

Total Pages: 493

ISBN-13: 0470385812

DOWNLOAD EBOOK

An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. Principles of Chemical Reactor Analysis and Design prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors.