CFD Applications in Nuclear Engineering

CFD Applications in Nuclear Engineering

Author: Wenxi Tian

Publisher: Frontiers Media SA

Published: 2023-08-21

Total Pages: 219

ISBN-13: 2832533264

DOWNLOAD EBOOK

High fidelity nuclear reactor thermal hydraulic simulations are a hot research topic in the development of nuclear engineering technology. The three-dimensional Computational Fluid Dynamics (CFD) and Computational Multi-phase Fluid Dynamics (CMFD) methods have attracted significant attention in predicting single-phase and multi-phase flows under steady-state or transient scenarios in the field of nuclear reactor engineering. Compared with three-dimensional thermal hydraulic methods, the traditional one-dimensional system analysis method contains inherent defects in the required accuracy and spatial resolution for a number of important nuclear reactor thermal-hydraulic phenomena. At present the CFD method has been widely adopted in the nuclear industry, across both light water reactors and liquid metal cooled fast reactors, providing an effective solution for complex issues of thermal hydraulic analysis. However, the CFD method employs empirical models for turbulence simulation, heat transfer, multi-phase interaction and chemical reactions. Such models must be validated before they can be used with confidence in nuclear reactor applications. In addition, user practice guidelines play a critical role in achieving reliable results from CFD simulations.


Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Author: Jyeshtharaj Joshi

Publisher: Woodhead Publishing

Published: 2019-06-11

Total Pages: 888

ISBN-13: 0081023375

DOWNLOAD EBOOK

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants.


Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Author: Ferry Roelofs

Publisher: Woodhead Publishing

Published: 2018-11-30

Total Pages: 464

ISBN-13: 0081019815

DOWNLOAD EBOOK

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications


Computational Fluid Dynamics for Engineers and Scientists

Computational Fluid Dynamics for Engineers and Scientists

Author: Sreenivas Jayanti

Publisher: Springer

Published: 2018-01-09

Total Pages: 411

ISBN-13: 9402412174

DOWNLOAD EBOOK

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.


50 Years of CFD in Engineering Sciences

50 Years of CFD in Engineering Sciences

Author: Akshai Runchal

Publisher: Springer Nature

Published: 2020-03-09

Total Pages: 950

ISBN-13: 9811526702

DOWNLOAD EBOOK

Prof. D. Brian Spalding, working with a small group of students and colleagues at Imperial College, London in the mid-to late-1960’s, single-handedly pioneered the use of Computational Fluid Dynamics (CFD) for engineering practice.​This book brings together advances in computational fluid dynamics in a collection of chapters authored by leading researchers, many of them students or associates of Prof. Spalding. The book intends to capture the key developments in specific fields of activity that have been transformed by application of CFD in the last 50 years. The focus is on review of the impact of CFD on these selected fields and of the novel applications that CFD has made possible. Some of the chapters trace the history of developments in a specific field and the role played by Spalding and his contributions. The volume also includes a biographical summary of Brian Spalding as a person and as a scientist, as well as tributes to Brian Spalding by those whose life was impacted by his innovations. This volume would be of special interest to researchers, practicing engineers, and graduate students in various fields, including aerospace, energy, power and propulsion, transportation, combustion, management of the environment, health and pharmaceutical sciences.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2012-11-07

Total Pages: 458

ISBN-13: 0080982433

DOWNLOAD EBOOK

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .


Applied Computational Fluid Dynamics and Turbulence Modeling

Applied Computational Fluid Dynamics and Turbulence Modeling

Author: Sal Rodriguez

Publisher: Springer Nature

Published: 2019-12-06

Total Pages: 316

ISBN-13: 3030286916

DOWNLOAD EBOOK

This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.


Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers

Author: Bengt Andersson

Publisher: Cambridge University Press

Published: 2011-12-22

Total Pages: 203

ISBN-13: 1139505564

DOWNLOAD EBOOK

Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.


Research Directions in Computational Mechanics

Research Directions in Computational Mechanics

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 145

ISBN-13: 0309046483

DOWNLOAD EBOOK

Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.


Computational Fluid Dynamics in Fire Engineering

Computational Fluid Dynamics in Fire Engineering

Author: Guan Heng Yeoh

Publisher: Butterworth-Heinemann

Published: 2009-04-20

Total Pages: 545

ISBN-13: 0080570038

DOWNLOAD EBOOK

Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. - Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering - Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators - Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software