Centrifugal Separations in Molecular and Cell Biology

Centrifugal Separations in Molecular and Cell Biology

Author: G.D. Birnie

Publisher: Butterworth-Heinemann

Published: 2014-06-28

Total Pages: 340

ISBN-13: 1483278417

DOWNLOAD EBOOK

Centrifugal Separations in Molecular and Cell Biology focuses on the application of modern centrifugation technology in molecular and cell biology, including the separation and fractionation of biological particles by centrifugation on the preparative and analytical scales. The selection first covers the principles and practices of centrifugation and the bases of centrifugal separations. Discussions focus on the basic concepts of sedimentation theory, centrifugation methods, designing centrifugation experiments, care of centrifuges and rotors, and statistical estimation of molecular parameters. The book also ponders on the practical aspects of rate-zonal centrifugation, including gradient materials, density and viscosity of glycerol solutions, and resolution and gradient shape. The publication examines fractionations in zonal rotors and the quantitative aspects of rate-zonal centrifugation. The text then reviews isopycnic centrifugation in ionic media and analytical centrifugation. Topics include separation by isopycnic banding, large-scale preparative procedures, and density-gradient solutes. The selection is a valuable reference for readers interested in centrifugation technology.


Centrifugal Separations in Biotechnology

Centrifugal Separations in Biotechnology

Author: Wallace Woon-Fong Leung

Publisher: Butterworth-Heinemann

Published: 2020-03-13

Total Pages: 503

ISBN-13: 0081026358

DOWNLOAD EBOOK

Centrifugal Separations in Biotechnology, Second Edition, is the only book on the market devoted to centrifugal separation in biotechnology. Key topics covered include a full introduction to centrifugation, sedimentation and separation; detailed coverage of centrifuge types, including batch and semi-batch centrifuges, disk-stack and tubular decanter centrifuges; methods for increasing solids concentration; laboratory and pilot testing of centrifuges; selection and sizing centrifuges; scale-up of equipment, performance prediction and analysis of test results using numerical simulation. Centrifugal Separations in Biotechnology, Second Edition, provides guidance on troubleshooting and optimizing centrifuges, and then goes on to explore the commercial applications of centrifuges in biotechnology. It gives detailed process information and data to assist in the development of particular processes from existing systems. It is of value to professionals in the chemical, bioprocess, and biotech sectors, and all those concerned with bioseparation, bioprocessing, unit-operations and process engineering. Provides a comprehensive guide to centrifuges, their optimal development, and their operation in the biotechnology industry Updated throughout based on developments in industrial applications and advances in our understanding of centrifugal separations in biotechnology Discusses applications for the separation of proteins, DNA, mitochondria, ribosomes, lysosomes and other cellular elements Includes new sections on use of optimal polymer dosage in waste treatment, new centrifuge designs for applications in algae processing, biopharma, and more


Centrifugation

Centrifugation

Author: David Rickwood

Publisher:

Published: 1984

Total Pages: 374

ISBN-13:

DOWNLOAD EBOOK

This edition provides extensive experimental details of protocols for all types of centrifugal separations from macrmolecules to whole cells. It also describes the applications of centrifuges ranging from simle bench machines to analytical centrifuges.


Cell Separation

Cell Separation

Author: Derek Fisher

Publisher: OUP Oxford

Published: 1998-11-26

Total Pages: 290

ISBN-13: 0191565555

DOWNLOAD EBOOK

Techniques for separating cells are needed in many areas of cell biology. This book presents modern methods from the laboratories of experts in the field, and includes tested, reproducible protocols, hints and tips for success, and troubleshooting suggestions. It will be invaluable to a wide range of cell biologists.


Separations Using Aqueous Phase Systems

Separations Using Aqueous Phase Systems

Author: D. Fisher

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 476

ISBN-13: 1468456679

DOWNLOAD EBOOK

The use of aqueous two-phase systems for the partitioning of macromolecules, organelles and cells was originally developed by Per-Ake Albertsson in Sweden in the mid-fifties [1-3]. These systems were initially applied to separations of plant organelles and viruses but their use has now extended into most areas of cell biology and biochemistry [4,5]. Since 1979 biennial International Conferences on Partitioning in Aqueous Two-Phase Systems have been held in Los Angeles (1979), Sheffield (1981), Vancouver (1983) and Lund (1985). The 5th conference was held in Oxford from 23-28 August 1987 and was entitled "Advances in Separations Using Aqueous Phase Systems in Cell Biology and Biotechnology". It is the formal presentations from this meeting which comprise this volume. In contrast to earlier books on phase partitioning [4,5] this volume contains, for the first time, worldwide contributions from over sixty partitioners from a variety of scientific disciplines, thereby providing a detailed overview of the widespread application and potential of bioseparations using phase partitioning. Disciplines include Biophysics, Biochemistry, Cell Biology, Microbiology, Biotechnology and Process Engineering, in both academic and commercial establishments. These biennial conferences allow advances in these diverse partitioning fields to be reviewed and compared; they also provide an opportunity for those considering using phase partitioning to obtain information, advice and contacts. Attendance has grown steadily over the years and 140 scientists came to Oxford. The conference consisted of ten symposia on areas of application of partitioning which have been organised as specific chapters in this volume.


Centrifugation Techniques

Centrifugation Techniques

Author: Shalinee Naidoo

Publisher: Arcler Press

Published: 2017-11

Total Pages: 0

ISBN-13: 9781773610610

DOWNLOAD EBOOK

Cell biology involves the analysis of cells and tissues at both the morphological and biochemical levels in an attempt to understand the molecular mechanisms operating in any living organism. Proper biochemical analysis of biological samples is imperative for constructing complete and true cell biology. The subcellular organization of cells can be studied via electron microscopy or by the separation and subsequent molecular and biochemical analysis of individual cellular components. While electron microscopy provides detailed information about the appearance of cellular organelles, not much information can be obtained regarding their individual functions. As such, a way to separate the different organelles from remaining cellular components was needed (OpenLearn, 2017). This was made possible by a technique known as cell fractionation which allows for the isolation of various cellular components (nuclear, cytosolic and mitochondrial) based on their subcellular compartmentalized distribution followed by analysis of their molecular information ranging from the state and distribution of a cell or subcellular component to their response to a range of treatments (Dimauro et al, 2012). The separation of cellular components and particles by sedimentation is one of the most powerful tools in biology. Even though sedimentation using centrifugation is not a new technology, it is essential for conducting cutting edge genomic and proteomic research, as it aids in providing purified particles of interest. As such, centrifugation forms one of the most important and widely applied research techniques used in various disciplines today. It services a range of research fields such as biochemistry, cellular and molecular biology while allowing large scale applications across a broad spectrum of industries ranging from large scale commercial applications in the pharmaceutical and agricultural industries to small scale laboratory-scale scientific studies. Miescher was one of the first researchers to use a centrifuge for the isolation of a cell organelle when he separated nuclei from human pus cells in 1871. A survey conducted at the US National Institutes of Health revealed that over 65% of research workers believe that using centrifugation to purify cells, subcellular organelles, viruses, proteins, and nucleic acids is an essential part of their everyday research, further proving the importance of this technique in today's scientific world (Sigma-Aldrich, 2011). Current research applications rely on centrifugation for the isolation and harvest of cells, sub cellular components and macromolecules in high yields. It is commonly used as a separation technique when gravity separation is too slow and particles within the sample to be separated do not settle readily or at all. This technique has since paved the way for the determination and understanding of fundamental cellular processes such as oxidative phosphorylation, intracellular digestion, protein synthesis as well as transportation of substances in and out of the cell (Graham and Rickwood). Thus centrifuges are now regarded as one of the most basic yet valuable pieces of equipment required in biological laboratories. This book aims to provide an introduction into the history and principles of centrifugation as well as an in depth explanation of the history and principles surrounding centrifugation. It also aims to provide an explanation of commonly used centrifugation techniques and their related practical applications in various industries. Furthermore, to aid in understanding the various principles behind this technique, the basic design of various rotors have been diagrammatically presented. Also in this book is an overview of the currently available centrifuge types and related instrument components as well as a description of centrifugal theory, a table comparing densities of commonly separated macromolecules and additional information on separation techniques together with a comprehensive advice for proper centrifuge handling, maintenance and related safety protocols. There is also further information on sample preparation and and how to design an ideal centrifugation protocol.


Methods of Cell Separation

Methods of Cell Separation

Author: Nicholas Catsimpoolas

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 211

ISBN-13: 1468436627

DOWNLOAD EBOOK

Presently, the need for methods involving separation, identification, and characterization of different kinds of cells is amply realized among immu nologists, hematologists, cell biologists, clinical pathologists, and cancer researchers. Unless cells exhibiting different functions and stages of differ entiation are separated from one another, it will be exceedingly difficult to study some of the molecular mechanisms involved in cell recognition, spe cialization, interactions, cytotoxicity, and transformation. Clinical diagno sis of diseased states and use of isolated cells for therapeutic (e. g. , immu notherapy) or survival (e. g, transfusion) purposes are some of the pressing areas where immediate practical benefits can be obtained by applying cell separation techniques. However, the development of such useful methods is still in its infancy. A number of good techniques exist based either on the physical or biological properties of the cells, and these have produced some valuable results. Still others are to be discovered. Therefore, the purpose of this open-ended treatise is to acquaint the reader with some of the basic principles, instrumentation, and procedures presently in practice at various laboratories around the world and to present some typical applications of each technique to particular biological problems.


Biological Centrifugation

Biological Centrifugation

Author: Dr John Graham

Publisher: Garland Science

Published: 2020-12-17

Total Pages: 224

ISBN-13: 1000102254

DOWNLOAD EBOOK

An important introduction to the use of the centrifuge in the biology laboratory, Biological Centrifugation is also useful for more experienced workers. The book describes the background and the principles behind centrifugation, including sedimentation theory. The book also considers the different types of centrifuge and other centrifuge hardware available, density gradient media and gradient technology. Although aimed primarily at the novice, this title also provides information to allow more experienced workers to modify and update existing techniques.