Biostatistical Methods

Biostatistical Methods

Author: John M. Lachin

Publisher: John Wiley & Sons

Published: 2014-08-22

Total Pages: 676

ISBN-13: 1118625846

DOWNLOAD EBOOK

Praise for the First Edition ". . . an excellent textbook . . . an indispensable reference for biostatisticians and epidemiologists." —International Statistical Institute A new edition of the definitive guide to classical and modern methods of biostatistics Biostatistics consists of various quantitative techniques that are essential to the description and evaluation of relationships among biologic and medical phenomena. Biostatistical Methods: The Assessment of Relative Risks, Second Edition develops basic concepts and derives an expanded array of biostatistical methods through the application of both classical statistical tools and more modern likelihood-based theories. With its fluid and balanced presentation, the book guides readers through the important statistical methods for the assessment of absolute and relative risks in epidemiologic studies and clinical trials with categorical, count, and event-time data. Presenting a broad scope of coverage and the latest research on the topic, the author begins with categorical data analysis methods for cross-sectional, prospective, and retrospective studies of binary, polychotomous, and ordinal data. Subsequent chapters present modern model-based approaches that include unconditional and conditional logistic regression; Poisson and negative binomial models for count data; and the analysis of event-time data including the Cox proportional hazards model and its generalizations. The book now includes an introduction to mixed models with fixed and random effects as well as expanded methods for evaluation of sample size and power. Additional new topics featured in this Second Edition include: Establishing equivalence and non-inferiority Methods for the analysis of polychotomous and ordinal data, including matched data and the Kappa agreement index Multinomial logistic for polychotomous data and proportional odds models for ordinal data Negative binomial models for count data as an alternative to the Poisson model GEE models for the analysis of longitudinal repeated measures and multivariate observations Throughout the book, SAS is utilized to illustrate applications to numerous real-world examples and case studies. A related website features all the data used in examples and problem sets along with the author's SAS routines. Biostatistical Methods, Second Edition is an excellent book for biostatistics courses at the graduate level. It is also an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.


Biostatistical Methods

Biostatistical Methods

Author: Stephen W. Looney

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 221

ISBN-13: 1592592422

DOWNLOAD EBOOK

Leading biostatisticians and biomedical researchers describe many of the key techniques used to solve commonly occurring data analytic problems in molecular biology, and demonstrate how these methods can be used in the development of new markers for exposure to a risk factor or for disease outcomes. Major areas of application include microarray analysis, proteomic studies, image quantitation, genetic susceptibility and association, evaluation of new biomarkers, and power analysis and sample size.


Biostatistical Methods

Biostatistical Methods

Author: John M. Lachin

Publisher: John Wiley & Sons

Published: 2009-09-25

Total Pages: 568

ISBN-13: 0470317892

DOWNLOAD EBOOK

Comprehensive coverage of classical and modern methods of biostatistics Biostatistical Methods focuses on the assessment of risks and relative risks on the basis of clinical investigations. It develops basic concepts and derives biostatistical methods through both the application of classical mathematical statistical tools and more modern likelihood-based theories. The first half of the book presents methods for the analysis of single and multiple 2x2 tables for cross-sectional, prospective, and retrospective (case-control) sampling, with and without matching using fixed and two-stage random effects models. The text then moves on to present a more modern likelihood- or model-based approach, which includes unconditional and conditional logistic regression; the analysis of count data and the Poisson regression model; and the analysis of event time data, including the proportional hazards and multiplicative intensity models. The book contains a technical appendix that presents the core mathematical statistical theory used for the development of classical and modern statistical methods. Biostatistical Methods: The Assessment of Relative Risks: * Presents modern biostatistical methods that are generalizations of the classical methods discussed * Emphasizes derivations, not just cookbook methods * Provides copious reference citations for further reading * Includes extensive problem sets * Employs case studies to illustrate application of methods * Illustrates all methods using the Statistical Analysis System(r) (SAS) Supplemented with numerous graphs, charts, and tables as well as a Web site for larger data sets and exercises, Biostatistical Methods: The Assessment of Relative Risks is an excellent guide for graduate-level students in biostatistics and an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.


Practical Biostatistical Methods

Practical Biostatistical Methods

Author: S. Selvin

Publisher: Brooks/Cole

Published: 1995

Total Pages: 530

ISBN-13:

DOWNLOAD EBOOK

This text covers intermediate statistical methods in a practical and mathematically intuitive (no calculus) mode. It focuses on the following analysis methods useful to the researcher: linear regression, discriminant analysis, contingency tables, survival analysis, covariance, principal components, logistic regression and Poisson regression. Nonparametric methods are incorporated as needed.


Modern Issues and Methods in Biostatistics

Modern Issues and Methods in Biostatistics

Author: Mark Chang

Publisher: Springer Science & Business Media

Published: 2011-07-15

Total Pages: 316

ISBN-13: 144199842X

DOWNLOAD EBOOK

Classic biostatistics, a branch of statistical science, has as its main focus the applications of statistics in public health, the life sciences, and the pharmaceutical industry. Modern biostatistics, beyond just a simple application of statistics, is a confluence of statistics and knowledge of multiple intertwined fields. The application demands, the advancements in computer technology, and the rapid growth of life science data (e.g., genomics data) have promoted the formation of modern biostatistics. There are at least three characteristics of modern biostatistics: (1) in-depth engagement in the application fields that require penetration of knowledge across several fields, (2) high-level complexity of data because they are longitudinal, incomplete, or latent because they are heterogeneous due to a mixture of data or experiment types, because of high-dimensionality, which may make meaningful reduction impossible, or because of extremely small or large size; and (3) dynamics, the speed of development in methodology and analyses, has to match the fast growth of data with a constantly changing face. This book is written for researchers, biostatisticians/statisticians, and scientists who are interested in quantitative analyses. The goal is to introduce modern methods in biostatistics and help researchers and students quickly grasp key concepts and methods. Many methods can solve the same problem and many problems can be solved by the same method, which becomes apparent when those topics are discussed in this single volume.


Biostatistical Design and Analysis Using R

Biostatistical Design and Analysis Using R

Author: Dr Murray Logan

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 578

ISBN-13: 144436247X

DOWNLOAD EBOOK

R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.


Statistical Methods in Bioinformatics

Statistical Methods in Bioinformatics

Author: Warren J. Ewens

Publisher: Springer Science & Business Media

Published: 2005-09-30

Total Pages: 616

ISBN-13: 0387400826

DOWNLOAD EBOOK

Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)


Biostatistical Methods in Epidemiology

Biostatistical Methods in Epidemiology

Author: Stephen C. Newman

Publisher: John Wiley & Sons

Published: 2003-04-11

Total Pages: 403

ISBN-13: 0471461601

DOWNLOAD EBOOK

An introduction to classical biostatistical methods in epidemiology Biostatistical Methods in Epidemiology provides an introduction to a wide range of methods used to analyze epidemiologic data, with a focus on nonregression techniques. The text includes an extensive discussion of measurement issues in epidemiology, especially confounding. Maximum likelihood, Mantel-Haenszel, and weighted least squares methods are presented for the analysis of closed cohort and case-control data. Kaplan-Meier and Poisson methods are described for the analysis of censored survival data. A justification for using odds ratio methods in case-control studies is provided. Standardization of rates is discussed and the construction of ordinary, multiple decrement and cause-deleted life tables is outlined. Sample size formulas are given for a range of epidemiologic study designs. The text ends with a brief overview of logistic and Cox regression. Other highlights include: Many worked examples based on actual data Discussion of exact methods Recommendations for preferred methods Extensive appendices and references Biostatistical Methods in Epidemiology provides an excellent introduction to the subject for students, while also serving as a comprehensive reference for epidemiologists and other health professionals. For more information, visit www.wiley.com/mathematics


Biostatistical Methods

Biostatistical Methods

Author: Stephen W. Looney

Publisher: Humana

Published: 2010-11-10

Total Pages: 0

ISBN-13: 9781617372711

DOWNLOAD EBOOK

Leading biostatisticians and biomedical researchers describe many of the key techniques used to solve commonly occurring data analytic problems in molecular biology, and demonstrate how these methods can be used in the development of new markers for exposure to a risk factor or for disease outcomes. Major areas of application include microarray analysis, proteomic studies, image quantitation, genetic susceptibility and association, evaluation of new biomarkers, and power analysis and sample size.


Statistical Methods in Diagnostic Medicine

Statistical Methods in Diagnostic Medicine

Author: Xiao-Hua Zhou

Publisher: John Wiley & Sons

Published: 2014-08-21

Total Pages: 597

ISBN-13: 1118626044

DOWNLOAD EBOOK

Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.