Bio-based Materials and Biotechnologies for Eco-efficient Construction fills a gap in the published literature, discussing bio-based materials and biotechnologies that are crucial for a more sustainable construction industry. With comprehensive coverage and contributions from leading experts in the field, the book includes sections on Bio-based materials and biotechnologies for infrastructure applications, Bio-based materials and biotechnologies for building energy efficiency, and other applications, such as using biotechnology to reduce indoor air pollution, for water treatment, and in soil decontamination. The book will be an essential reference resource for academic researchers, civil engineers, contractors working in construction works, postgraduate students and other professionals.
Performance of Bio-based Building Materials provides guidance on the use of bio-based building materials (BBBM) with respect to their performance. The book focuses on BBBM currently present on the European market. The state-of-the-art is presented regarding material properties, recommended uses, performance expectancies, testing methodology, and related standards. Chapters cover both 'old and traditional' BBBM since quite a few of them are experiencing a comeback on the market. Promising developments that could become commercial in the near future are presented as well. The book will be a valuable reference resource for those working in the bio-based materials research community, architects and agencies dealing with sustainable construction, and graduate students in civil engineering. - Takes a unique approach to bio-based materials and presents a broad overview of the topics on relevant areas necessary for application and promotion in construction - Contains a general description, notable properties related to performance, and applications - Presents standards that are structured according to performance types
Petroleum-based industrial products have gradually replaced products derived from biological materials. However, biologically based products are making a comeback--because of a threefold increase in farm productivity and new technologies. Biobased Industrial Products envisions a biobased industrial future, where starch will be used to make biopolymers and vegetable oils will become a routine component in lubricants and detergents. Biobased Industrial Products overviews the U.S. land resources available for agricultural production, summarizes plant materials currently produced, and describes prospects for increasing varieties and yields. The committee discusses the concept of the biorefinery and outlines proven and potential thermal, mechanical, and chemical technologies for conversion of natural resources to industrial applications. The committee also illustrates the developmental dynamics of biobased products through existing examples, as well as products still on the drawing board, and it identifies priorities for research and development.
This book provides an overview of the lastest developments in biobased materials and their applications in food packaging. Written by experts in their respective research domain, its thirteen chapters discuss in detail fundamental knowledge on bio based materials. It is intended as a reference book for researchers, students, research scholars, academicians and scientists seeking biobased materials for food packaging applications.
Biobased Products and Industries fills the gap between academia and industry by covering all the important aspects of biobased products and their relevant industries in one single reference. Highlighting different perspectives of the bioeconomy, EU relevant projects, as well as the environmental impact of biobased materials and sustainability, the book covers biobased polymers, plastics, nanocomposites, packaging materials, electric devices, biofuels, textiles, consumer goods, and biocatalysis for the decarboxylation and decarboxylation of biobased molecules, including biobased products from alternative sources (algae) and the biobased production of chemicals through metabolic engineering. Focusing on the most recent advances in the field, the book also analyzes the potentiality of already commercialized processes and products. - Highlights the important aspects of biobased products as well as their relevant industries in one single reference - Focuses on the most recent advances in the field, analyzing the potentiality of already commercialized processes and products - Provides an ideal resource for anyone dealing with bioresource technology, biomass valorization and new products development
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs
This book discusses the extraction, purification, modification, and processing of biobased materials and their various industrial applications, across biomedical, pharmaceutical, construction, and other industries. It includes contributions from experts on hybrid biopolymers and bio-composites, bioactive and biodegradable materials, bio-inert polymers, natural polymers and composites, and metallic natural materials. Therefore, this encyclopedia is a useful reference for scientists, academicians, research scholars, and technologists. Major challenges of biobased materials are their efficient development, cost-effective, and green & environment friendly production/applications. This encyclopedia answers these challenges to professionals and scientists for proper utilization of biobased materials. It presents the recent practices of biobased materials technology in different scientific and engineering domains. It helps the bounded industrial outcomes to reach the general readership of different domains. This encyclopedia bridges the technological gaps between the industrial and academic professionals and the novice young students/scholars. The interdisciplinarity of this encyclopedia makes it unique for a wide readership. The topic of biobased materials is currently popular in the scientific community, working in such following areas as Recycled materials, Renewable materials, Materials for efficiency, Materials for waste treatment, Materials for reduction of environmental load, Materials for easy disposal or recycle, Hazardous free materials, Materials for reducing human health impact, Materials for energy efficiency, Materials for green energy, etc. This is a relatively hot topic in materials science and has strong demands for energy, material and money savings, as well as heavy contamination problems, despite that the area of biobased materials belongs to most important fields of modern science & technology, no important encyclopedias have been published in the area of “biobased materials”
With the increasing awareness and concern about the dependency on fossil resources and the depletion of crude oil reserves, experts from industrial biotechnology, renewable resources, green chemistry, and biorefineries are stimulating the transition from the fossil-based to the bio-based economy. This text confronts scientific and economic challenges and strategies for making this crucial transition. Renewable Resources for Biorefineries is the work of a strongly interdisciplinary authorship, offering perspectives from biology, chemistry, biochemical engineering, materials science, and industry. This unique approach provides an opportunity for a much broader coverage of biomass and valorisation than has been attempted in previous titles. This book also represents the fundamentally important technical and policy aspects of a bio-based economy, to ground this important science in a realistic and viable economic framework. Chapters in this book cover a diverse range of topics, including: advanced generation bioenergy sectors; biobased polymers and materials; chemical platform molecules; industrial crops and biorefineries; financing and policy for change; and valorisation of biomass waste streams. This is an ideal book for upper level undergraduate and postgraduate students taking modules on Renewable resources, green chemistry, sustainable development, environmental science, agricultural science and environmental technology. It will also benefit industry professionals and product developers who are looking to improve economic and environmental ways to utilise renewable resources in current and future biorefineries.
In this book, Nigeria, the most populous country in Africa and a region in the lowest income group per capita, is used to demonstrate the potential for healthcare reorganization and collaboration with the introduction of “successful” technologies centered around available, bio-compatible, and sustainable natural resources. Our book discusses three of the top killers of children under 5 years of age in Nigeria, pneumonia (20%), diarrheal diseases (15%), and traumatic injuries (4%). These conditions are used as examples to demonstrate the potential for improved pediatric outcomes with treatments engineered from sustainable and natural resources. Furthermore, this book outlines possible action items that can help drive economic growth, educational opportunities, collaborative outreach, and workforce productivity to build a healthy and sustainable community. Medical technology in the industrialized world has seen rapid advancements leading to increased survival and greater patient outcomes. However, the development and implementation of these resources is not always applicable to regions in need of new and more basic ways to provide treatment. Moore’s Law, a paradigm that considers advancement synonymous with increased digitization and optimization of electronic processes, defines the history of technology. However, the functionality of advanced and “smart” technology is essentially useless in underdeveloped areas. These regions lack some of the basic requirements for innovative medical technologies to impact human health, such as electricity, access to spare parts, computer analysis tools, and network architecture. In addition, the poor physical infrastructure, insufficient management, and lack of technical culture are barriers for entry and sustainability of these technologies. Rather than importing medical devices from industrialized countries, we propose that the mindset and research focus for under developed areas must be on “successful” technologies. Simply put, these areas need technology that “gets the job done.”
Aerogels have been in use for over 80 years and have been utilised in a wide variety of applications, in particular, there has been growing use of insulating nanoporous materials in the aerospace industry. Recent awareness of the environmental implications of materials has driven researchers to develop new green materials, with aerogels being developed using biobased constituents, such as polysaccharides and proteins. Recently, biobased components, such as cellulose nanocrystals, have replaced synthetic counterparts in the production of nanoporous materials. Biobased Aerogels is the first book to cover aerogel research from a green perspective, using commentary and analysis from leading researchers working in the field. Aerogels based on polysaccharides and proteins, their preparation and characterisation will be covered in detail, with further discussion highlighting properties such as surface morphology, shape recovery, mechanical properties and adsorption capacity. This insightful and timely publication will provide essential reading for those researchers and industrialists working within the green chemistry field.