Basic Proof Theory

Basic Proof Theory

Author: A. S. Troelstra

Publisher: Cambridge University Press

Published: 2000-07-27

Total Pages: 436

ISBN-13: 9780521779111

DOWNLOAD EBOOK

This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.


An Introduction to Proof Theory

An Introduction to Proof Theory

Author: Paolo Mancosu

Publisher: Oxford University Press

Published: 2021-08-12

Total Pages: 336

ISBN-13: 0192649299

DOWNLOAD EBOOK

An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.


Proofs from THE BOOK

Proofs from THE BOOK

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 194

ISBN-13: 3662223430

DOWNLOAD EBOOK

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.


Book of Proof

Book of Proof

Author: Richard H. Hammack

Publisher:

Published: 2016-01-01

Total Pages: 314

ISBN-13: 9780989472111

DOWNLOAD EBOOK

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.


Structural Proof Theory

Structural Proof Theory

Author: Sara Negri

Publisher: Cambridge University Press

Published: 2008-07-10

Total Pages: 279

ISBN-13: 9780521068420

DOWNLOAD EBOOK

A concise introduction to structural proof theory, a branch of logic studying the general structure of logical and mathematical proofs.


Proof Theory

Proof Theory

Author: Peter Aczel

Publisher: Cambridge University Press

Published: 1992

Total Pages: 320

ISBN-13: 9780521414135

DOWNLOAD EBOOK

The lecture courses in this work are derived from the SERC 'Logic for IT' Summer School and Conference on Proof Theory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles; put together in this book they form an invaluable introduction to proof theory that is aimed at both mathematicians and computer scientists.


How to Prove It

How to Prove It

Author: Daniel J. Velleman

Publisher: Cambridge University Press

Published: 2006-01-16

Total Pages: 401

ISBN-13: 0521861241

DOWNLOAD EBOOK

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.


Ordinal Analysis with an Introduction to Proof Theory

Ordinal Analysis with an Introduction to Proof Theory

Author: Toshiyasu Arai

Publisher: Springer Nature

Published: 2020-08-11

Total Pages: 327

ISBN-13: 9811564590

DOWNLOAD EBOOK

This book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.


Handbook of Proof Theory

Handbook of Proof Theory

Author: S.R. Buss

Publisher: Elsevier

Published: 1998-07-09

Total Pages: 823

ISBN-13: 0080533183

DOWNLOAD EBOOK

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.


Proofs and Fundamentals

Proofs and Fundamentals

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 434

ISBN-13: 1461221307

DOWNLOAD EBOOK

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.