This book constitutes the refereed proceedings of the Second International Workshop on Autonomous Intelligent Systems: Agents and Data Mining, AIS-ADM 2007, held in St. Petersburg, Russia in June 2007. The 17 revised full papers and six revised short papers presented together with four invited lectures cover agent and data mining, agent competition and data mining, as well as text mining, semantic Web, and agents.
This volume contains the papers presented at the International Workshop Autonomous Intelligent Systems: Agents and Data Mining (AIS-ADM 2005) held in St. Petersburg, Russia, during June 6–8, 2005.
An autonomous agent is a computational system that acquires sensory data from its environment and decides by itself how to relate the external stimulus to its behaviors in order to attain certain goals. Responding to different stimuli received from its task environment, the agent may select and exhibit different behavioral patterns. The behavioral patterns may be carefully predefined or dynamically acquired by the agent based on some learning and adaptation mechanism(s). In order to achieve structural flexibility, reliability through redundancy, adaptability, and reconfigurability in real-world tasks, some researchers have started to address the issue of multiagent cooperation. Broadly speaking, the power of autonomous agents lies in their ability to deal with unpredictable, dynamically changing environments. Agent-based systems are becoming one of the most important computer technologies, holding out many promises for solving real-world problems. The aims of this book are to provide a guided tour to the pioneering work and the major technical issues in agent research, and to give an in-depth discussion on the computational mechanisms for behavioral engineering in autonomous agents. Through a systematic examination, the book attempts to provide the general design principles for building autonomous agents and the analytical tools for modeling the emerged behavioral properties of a multiagent system.
This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.
Data Mining and Multi agent Integration aims to re?ect state of the art research and development of agent mining interaction and integration (for short, agent min ing). The book was motivated by increasing interest and work in the agents data min ing, and vice versa. The interaction and integration comes about from the intrinsic challenges faced by agent technology and data mining respectively; for instance, multi agent systems face the problem of enhancing agent learning capability, and avoiding the uncertainty of self organization and intelligence emergence. Data min ing, if integrated into agent systems, can greatly enhance the learning skills of agents, and assist agents with predication of future states, thus initiating follow up action or intervention. The data mining community is now struggling with mining distributed, interactive and heterogeneous data sources. Agents can be used to man age such data sources for data access, monitoring, integration, and pattern merging from the infrastructure, gateway, message passing and pattern delivery perspectives. These two examples illustrate the potential of agent mining in handling challenges in respective communities. There is an excellent opportunity to create innovative, dual agent mining interac tion and integration technology, tools and systems which will deliver results in one new technology.
The study of multi-agent systems (MAS) focuses on systems in which many intelligent agents interact with each other. These agents are considered to be autonomous entities such as software programs or robots. Their interactions can either be cooperative (for example as in an ant colony) or selfish (as in a free market economy). This book assumes only basic knowledge of algorithms and discrete maths, both of which are taught as standard in the first or second year of computer science degree programmes. A basic knowledge of artificial intelligence would useful to help understand some of the issues, but is not essential. The book’s main aims are: To introduce the student to the concept of agents and multi-agent systems, and the main applications for which they are appropriate To introduce the main issues surrounding the design of intelligent agents To introduce the main issues surrounding the design of a multi-agent society To introduce a number of typical applications for agent technology After reading the book the student should understand: The notion of an agent, how agents are distinct from other software paradigms (e.g. objects) and the characteristics of applications that lend themselves to agent-oriented software The key issues associated with constructing agents capable of intelligent autonomous action and the main approaches taken to developing such agents The key issues in designing societies of agents that can effectively cooperate in order to solve problems, including an understanding of the key types of multi-agent interactions possible in such systems The main application areas of agent-based systems
Multi-agent system (MAS) is an expanding field in science and engineering. It merges classical fields like game theory with modern ones like machine learning and computer science. This book provides a succinct introduction to the subject, covering the theoretical fundamentals as well as the latter developments in a coherent and clear manner. The book is centred on practical applications rather than introductory topics. Although it occasionally makes reference to the concepts involved, it will do so primarily to clarify real-world applications. The inner chapters cover a wide spectrum of issues related to MAS uses, which include collision avoidance, automotive applications, evacuation simulation, emergence analyses, cooperative control, context awareness, data (image) mining, resilience enhancement and the management of a single-user multi-robot.
The main concepts and techniques of multi-agent oriented programming, which supports the multi-agent systems paradigm at the programming level. A multi-agent system is an organized ensemble of autonomous, intelligent, goal-oriented entities called agents, communicating with each other and interacting within an environment. This book introduces the main concepts and techniques of multi-agent oriented programming, (MAOP) which supports the multi-agent systems paradigm at the programming level. MAOP provides a structured approach based on three integrated dimensions, which the book examines in detail: the agent dimension, used to design the individual (interacting) entities; the environment dimension, which allows the development of shared resources and connections to the real world; and the organization dimension, which structures the interactions among the autonomous agents and the shared environment.
This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.
The2009InternationalWorkshoponAgentsandDataMiningInteraction(ADMI 2009) was a joint event with AAMAS2009. In recentyears,agents and data mining interaction (ADMI), or agent mining forshort,hasemergedasaverypromisingresearch?eld. Followingthesuccessof ADMI 2006 in Hong Kong, ADMI 2007 in San Jose, and ADMI 2008 in Sydney, the ADMI 2009 workshop in Budapest provided a premier forum for sharing research and engineering results, as well as potential challenges and prospects encountered in the synergy between agents and data mining. As usual, the ADMI workshop encouraged and promoted theoretical and applied research and development, which aims at: – Exploitingagent-drivendatamininganddemonstratinghowintelligentagent technology can contribute to critical data mining problems in theory and practice – Improving data mining-driven agents and showing how data mining can strengthen agent intelligence in research and practical applications – Exploring the integration of agents and data mining toward a super-intelligent information processing and systems – Identifying challenges and directions for future research on the synergy between agents and data mining ADMI 2009 featured two invited talks and twelve selected papers. The ?rst invited talk was on “Agents and Data Mining in Bioinformatics,” with the s- ond focusing on “Knowledge-Based Reinforcement Learning. ” The ten accepted papers are from seven countries. A majority of submissions came from Eu- pean countries, indicating the boom of ADMI research in Europe. In addition the two invited papers, addressed fundamental issues related to agent-driven data mining, data mining-driven agents, and agent mining applications. The proceedings of the ADMI workshops will be published as part of the LNAIseriesbySpringer. WeappreciatethesupportofSpringer,andinparticular Alfred Hofmann.