With asynchronous circuit design becoming a powerful tool in the development of new digital systems, circuit designers are expected to have asynchronous design skills and be able to leverage them to reduce power consumption and increase system speed. This book walks readers through all of the different methodologies of asynchronous circuit design, emphasizing practical techniques and real-world applications instead of theoretical simulation. The only guide of its kind, it also features an ftp site complete with support materials. Market: Electrical Engineers, Computer Scientists, Device Designers, and Developers in industry.
Principles of Asynchronous Circuit Design - A Systems Perspective addresses the need for an introductory text on asynchronous circuit design. Part I is an 8-chapter tutorial which addresses the most important issues for the beginner, including how to think about asynchronous systems. Part II is a 4-chapter introduction to Balsa, a freely-available synthesis system for asynchronous circuits which will enable the reader to get hands-on experience of designing high-level asynchronous systems. Part III offers a number of examples of state-of-the-art asynchronous systems to illustrate what can be built using asynchronous techniques. The examples range from a complete commercial smart card chip to complex microprocessors. The objective in writing this book has been to enable industrial designers with a background in conventional (clocked) design to be able to understand asynchronous design sufficiently to assess what it has to offer and whether it might be advantageous in their next design task.
Unlike conventional synchronous circuits, asynchronous circuits are not coordinated by a clocking signal, but instead use handshaking protocols to control circuit behaviour. Asynchronous circuits have been found to offer several advantages, including high energy efficiency, flexible timing requirements, high modularity, low noise/EMI, and robustness to PVT variations. At the same time, growing pressures on the electronics industry for ever smaller, more efficient ICs are pushing the limits of conventional circuit technologies. These factors are spurring growing interest in asynchronous circuits amongst both the academic research and commercial R&D communities.
As the costs of power and timing become increasingly difficult to manage in traditional synchronous systems, designers are being forced to look at asynchronous alternatives. Based on reworked and expanded papers from the VII Banff Higher Order Workshop, this volume examines asynchronous methods which have been used in large circuit design, ranging from initial formal specification to more standard finite state machine based control models. Written by leading practitioners in the area, the papers cover many aspects of current practice including practical design, silicon compilation, and applications of formal specification. It also includes a state-of-the-art survey of asynchronous hardware design. The resulting volume will be invaluable to anyone interested in designing correct asynchronous circuits which exhibit high performance or low power operation.
Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asynchronous state machine design and analysis presented in two parts: Part I on the background fundamentals related to asynchronous sequential logic circuits generally, and Part II on self-timed systems, high-performance asynchronous programmable sequencers, and arbiters. Part I provides a detailed review of the background fundamentals for the design and analysis of asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented state diagrams, and the design and characteristics of basic memory cells and Muller C-elements. Simple FSMs using C-elements illustrate the design process. The detection and elimination of timing defects in asynchronous FSMs are covered in detail. This is followed by the array algebraic approach to the design of single-transition-time machines and use of CAD software for that purpose, one-hot asynchronous FSMs, and pulse mode FSMs. Part I concludes with the analysis procedures for asynchronous state machines. Part II is concerned mainly with self-timed systems, programmable sequencers, and arbiters. It begins with a detailed treatment of externally asynchronous/internally clocked (or pausable) systems that are delay-insensitive and metastability-hardened. This is followed by defect-free cascadable asynchronous sequencers, and defect-free one-hot asynchronous programmable sequencers--their characteristics, design, and applications. Part II concludes with arbiter modules of various types, those with and without metastability protection, together with applications. Presented in the appendices are brief reviews covering mixed-logic gate symbology, Boolean algebra, and entered-variable K-map minimization. End-of-chapter problems and a glossary of terms, expressions, and abbreviations contribute to the reader's learning experience. Five productivity tools are made available specifically for use with this text and briefly discussed in the Preface. Table of Contents: I: Background Fundamentals for Design and Analysis of Asynchronous State Machines / Introduction and Background / Simple FSM Design and Initialization / Detection and Elimination of Timing Defects in Asynchronous FSMs / Design of Single Transition Time Machines / Design of One-Hot Asynchronous FSMs / Design of Pulse Mode FSMs / Analysis of Asynchronous FSMs / II: Self-Timed Systems/ Programmable Sequencers, and Arbiters / Externally Asynchronous/Internally Clocked Systems / Cascadable Asynchronous Programmable Sequencers (CAPS) and Time-Shared System Design / Asynchronous One-Hot Programmable Sequencer Systems / Arbiter Modules
This book is an introduction to the design of asynchronous circuits. It is an updated and significantly extended version of an eight-chapter tutorial that first appeared as Part I in the book "Principles of asynchronous circuit design -- A systems perspective" edited by Sparsø and Furber (2001); a book that has become a standard reference on the topic. The extensions include improved coverage of data-flow components, a new chapter on two-phase bundled-data circuits, a new chapter on metastability, arbitration, and synchronization, and a new chapter on performance analysis using timed Petri nets. With these extensions, the text now provides a more complete coverage of the topic, and it is now made available as a stand-alone book. The book is a beginner's text and the amount of formal notation is deliberately kept at a minimum, using instead plain English and graphical illustrations to explain the underlying intuition and reasoning behind the concepts and methods covered. The book targets senior undergraduate and graduate students in Electrical and Computer Engineering and industrial designers with a background in conventional (clocked) digital design who wish to gain an understanding of asynchronous circuit design.
This book constitutes the refereed proceedings of the 11th International Conference on Field-Programmable Logic and Application, FPL 2001, held in Belfast, Northern Ireland, UK, in August 2001. The 56 revised full papers and 15 short papers presented were carefully reviewed and selected from a total of 117 submissions. The book offers topical sections on architectural framework, place and route, architecture, DSP, synthesis, encryption, runtime reconfiguration, graphics and vision, networking, processor interaction, applications, methodology, loops and systolic, image processing, faults, and arithmetic.
Create low power, higher performance circuits with shorter design times using this practical guide to asynchronous design. This practical alternative to conventional synchronous design enables performance close to full-custom designs with design times that approach commercially available ASIC standard cell flows. It includes design trade-offs, specific design examples, and end-of-chapter exercises. Emphasis throughout is placed on practical techniques and real-world applications, making this ideal for circuit design students interested in alternative design styles and system-on-chip circuits, as well as circuit designers in industry who need new solutions to old problems.
A unique guide to using both modeling and simulation in digital systems design Digital systems design requires rigorous modeling and simulation analysis that eliminates design risks and potential harm to users. Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL introduces the application of modeling and synthesis in the effective design of digital systems and explains applicable analytical and computational methods. Through step-by-step explanations and numerous examples, the author equips readers with the tools needed to model, synthesize, and simulate digital principles using Very High Speed Integrated Circuit Hardware Description Language (VHDL) programming. Extensively classroom-tested to ensure a fluid presentation, this book provides a comprehensive overview of the topic by integrating theoretical principles, discrete mathematical models, computer simulations, and basic methods of analysis. Topical coverage includes: Digital systems modeling and simulation Integrated logic Boolean algebra and logic Logic function optimization Number systems Combinational logic VHDL design concepts Sequential and synchronous sequential logic Each chapter begins with learning objectives that outline key concepts that follow, and all discussions conclude with problem sets that allow readers to test their comprehension of the presented material. Throughout the book, VHDL sample codes are used to illustrate circuit design, providing guidance not only on how to learn and master VHDL programming, but also how to model and simulate digital circuits. Introduction to Digital Systems is an excellent book for courses in modeling and simulation, operations research, engineering, and computer science at the upper-undergraduate and graduate levels. The book also serves as a valuable resource for researchers and practitioners in the fields of operations research, mathematical modeling, simulation, electrical engineering, and computer science.