This book explores the research fields of engineering cybernetics, bionics, artificial self-recovery and engineering self-recoveries. It explains the scientific and technological research results of artificial self-recovery, autonomous health technology and the application cases of assisted rehabilitation and autonomous health engineering. It provides guidance, latest research trends and development direction for researchers, scholars and engineers engaged in mechanical equipment fault diagnosis and autonomous health.
This book explores the research fields of engineering cybernetics, bionics, artificial self-recovery and engineering self-recoveries. It explains the scientific and technological research results of artificial self-recovery, autonomous health technology and the application cases of assisted rehabilitation and autonomous health engineering. It provides guidance, latest research trends and development direction for researchers, scholars and engineers engaged in mechanical equipment fault diagnosis and autonomous health. .
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
In today's business environment, reliability and maintenance drastically affect the three key elements of competitiveness - quality, cost, and product lead time. Well-maintained machines hold tolerances better, help reduce scrap and rework, and raise consistency and quality of the part in addition to cutting total production costs. Today, many factories are still performing maintenance on equipment in a reactive manner due to a lack of understanding about machine performance behaviour. To improve production efficiency, computer-aided maintenance and diagnostic methodology must be applied effectively in manufacturing. This book focuses on the fundamental principles of predictive maintenance and diagnostic engineering. In addition to covering the relevant theory, techniques and methodologies in maintenance engineering, the book also provides numerous case studies and examples illustrating the successful application of the principles and techniques outlined.
Human-Machine Shared Contexts considers the foundations, metrics, and applications of human-machine systems. Editors and authors debate whether machines, humans, and systems should speak only to each other, only to humans, or to both and how. The book establishes the meaning and operation of "shared contexts between humans and machines; it also explores how human-machine systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems composed of humans and machines. This book explores how user interventions may improve the context for autonomous machines operating in unfamiliar environments or when experiencing unanticipated events; how autonomous machines can be taught to explain contexts by reasoning, inferences, or causality, and decisions to humans relying on intuition; and for mutual context, how these machines may interdependently affect human awareness, teams and society, and how these "machines" may be affected in turn. In short, can context be mutually constructed and shared between machines and humans? The editors are interested in whether shared context follows when machines begin to think, or, like humans, develop subjective states that allow them to monitor and report on their interpretations of reality, forcing scientists to rethink the general model of human social behavior. If dependence on machine learning continues or grows, the public will also be interested in what happens to context shared by users, teams of humans and machines, or society when these machines malfunction. As scientists and engineers "think through this change in human terms," the ultimate goal is for AI to advance the performance of autonomous machines and teams of humans and machines for the betterment of society wherever these machines interact with humans or other machines. This book will be essential reading for professional, industrial, and military computer scientists and engineers; machine learning (ML) and artificial intelligence (AI) scientists and engineers, especially those engaged in research on autonomy, computational context, and human-machine shared contexts; advanced robotics scientists and engineers; scientists working with or interested in data issues for autonomous systems such as with the use of scarce data for training and operations with and without user interventions; social psychologists, scientists and physical research scientists pursuing models of shared context; modelers of the internet of things (IOT); systems of systems scientists and engineers and economists; scientists and engineers working with agent-based models (ABMs); policy specialists concerned with the impact of AI and ML on society and civilization; network scientists and engineers; applied mathematicians (e.g., holon theory, information theory); computational linguists; and blockchain scientists and engineers. - Discusses the foundations, metrics, and applications of human-machine systems - Considers advances and challenges in the performance of autonomous machines and teams of humans - Debates theoretical human-machine ecosystem models and what happens when machines malfunction
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Structural Health Monitoring (SHM) Management in Aerospace and Civil Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM) Management. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques can be applied to aircraft, mechanical and civil engineering structures with particular emphasis on composite materials.Structural Health Monitoring (SHM) Management in Aerospace and Civil Structures will be a valuable reference resource for R&D managers, materials scientists and engineers working in the aerospace sector as well as for researchers and system designers working in industry, academia and government research agencies developing new systems for the SHM of aerospace, mechanical and civil engineering structures. - Presents new developments in smart materials for sensing and actuation - Discusses new developments in mechanical metamaterials - Presents the latest on signal/imaging processing for damage diagnosis - Explores damage prognosis and integrated vehicle health management (IVHM) - Covers new developments in machine learning and artificial Intelligence
Implement, automate, build, operate, and optimize databases and other data-persistent technologies efficiently by leveraging the right set of DevOps best practices Key Features Implement core operational capabilities via automated pipelines, including testing and rollbacks Create infrastructure, deploy software, test execution, and monitor operations using the as-code strategy Automate common implementation patterns for databases with declarative orchestration frameworks Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's rapidly evolving world of DevOps, traditional silos are a thing of the past. Database administrators are no longer the only experts; site reliability engineers (SREs) and DevOps engineers are database experts as well. This blurring of the lines has led to increased responsibilities, making members of high-performing DevOps teams responsible for end-to-end ownership. This book helps you master DevOps for databases, making it a must-have resource for achieving success in the ever-changing world of DevOps. You’ll begin by exploring real-world examples of DevOps implementation and its significance in modern data-persistent technologies, before progressing into the various types of database technologies and recognizing their strengths, weaknesses, and commonalities. As you advance, the chapters will teach you about design, implementation, testing, and operations using practical examples, as well as common design patterns, combining them with tooling, technology, and strategies for different types of data-persistent technologies. You’ll also learn how to create complex end-to-end implementation, deployment, and cloud infrastructure strategies defined as code. By the end of this book, you’ll be equipped with the knowledge and tools to design, build, and operate complex systems efficiently.What you will learn Apply DevOps best practices to data-persistent technologies Get to grips with architectural-level design and implementation Explore the modern data journey and data modeling with database technology Master the operation of large-scale systems with zero-touch automation Achieve speed, resilience, security, and operability at different scales Design DevOps teams with end-to-end ownership models Who this book is for This book is for newcomers as well as seasoned SREs, DevOps engineers, and system engineers who are interested in large-scale systems with a heavy focus on data-persistent technologies. Database administrators looking to level up in the world of DevOps will also find this book helpful. Experience with cloud Infrastructure, basic development, and operations will help you get the most out of this book.
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the