Utopia is a work of fiction and socio-political satire by Thomas More published in 1516 in Latin. The book is a frame narrative primarily depicting a fictional island society and its religious, social and political customs. Many aspects of More's description of Utopia are reminiscent of life in monasteries.
This book contains around 80 articles on major writings in mathematics published between 1640 and 1940. All aspects of mathematics are covered: pure and applied, probability and statistics, foundations and philosophy. Sometimes two writings from the same period and the same subject are taken together. The biography of the author(s) is recorded, and the circumstances of the preparation of the writing are given. When the writing is of some lengths an analytical table of its contents is supplied. The contents of the writing is reviewed, and its impact described, at least for the immediate decades. Each article ends with a bibliography of primary and secondary items. - First book of its kind - Covers the period 1640-1940 of massive development in mathematics - Describes many of the main writings of mathematics - Articles written by specialists in their field
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.