Written for both experienced analysts and new graduates or postgraduates starting to use ICP-MS as part of their academic or industrial research, the ICP Mass Spectrometry Handbook provides a thorough description of ICP-MS instrumentation and techniques, giving the reader sufficient knowledge to approach the technique with confidence.
Determination of Trace Elements Edited by Zeev B. Alfassi The best way to determine trace elements! This easy-to-use handbook guides the reader through the maze of all modern analytical operations. Each method is described by an expert in the field. The book highlights the advantages and disadvantages of individual techniques and enables pharmacologists, environmentalists, material scientists, and food industry to select a judicious procedure for their trace element analysis.
The book provides an up-to-date account of inductively coupled plasmas and their use in atomic emission spectroscopy and mass spectrometry. Specific applications of the use of these techniques are highlighted including applications in environmental, food and industrial analysis. It is written in a distance learning / open learning style; suitable for self study applications. It contains contain self-assessment and discussion questions, worked examples and case studies that allow the reader to test their understanding of the presented material.
Alles über ICP-MS in einem Band! Renommierte Autoren informieren Sie über Theorie, Anwendung und instrumentelle Ausrüstung von A bis Z. Grundlagen werden ebenso behandelt wie neueste Entwicklungen, etwa bei Probenpräparation und Einsatz von Hochfrequenzgeneratoren. Enthält eine Fülle bisher unveröffentlichten Materials!
The first edition of our Handbook was written in 1983. In the preface to the first edition we noted the rapid development of inductively coupled plasma atomic emission spectrometry and its considerable potential for elemental analysis. The intervening five years have seen a substantial growth in ICP applications; much has happened and this is an appropriate time to present a revised edition. The basic approach of the book remains the same. This is a handbook, addressed to the user of the technique who seeks direct, practical advice. A concise summary of the technique is attempted. Detailed, theoretical treatment of the background to the method is not covered. We have, however, thoroughly revised much of the text, and new chapters have been added. These reflect the changes and progress in recent years. We are grateful to Mr Stephen Walton, Dr Gwendy Hall and London and Scandinavian Metallurgical Co. Ltd for their contributions. Chapter 3 (Instrumentation) has been rewritten by Mr Walton, the new Chapter on ICP-mass spectrometry has been written by Dr Hall, and London and Scandinavian provided much of the information for the chapter on metals analysis by ICP-AES. These chapters have been integrated into the book, and a conscious effort has been made to retain the unity of style within the book. New material has been added elsewhere in the book, archaeological materials are considered, pre concentration methods and chemometrics covered more fully.
The first scientific volume to compile the modern analytical techniques for glass analysis, Modern Methods for Analysing Archaeological and Historical Glass presents an up-to-date description of the physico-chemical methods suitable for determining the composition of glass and for speciation of specific components. This unique resource presents members of Association Internationale pour l'Histoire du Verre, as well as university scholars, with a number of case studies where the effective use of one or more of these methods for elucidating a particular culturo-historical or historo-technical aspect of glass manufacturing technology is documented.
The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.
Written by a field insider with more than 20 years of experience in the development and application of atomic spectroscopy instrumentation, the Practical Guide to ICP-MS offers key concepts and guidelines in a reader-friendly format that is superb for those with limited knowledge of the technique. This reference discusses the fundamental principles, analytical advantages, practical capabilities, and overall benefits of ICP-MS. It presents the most important selection criteria when evaluating commercial ICP-MS equipment and the most common application areas of ICP-MS such as the environmental, semiconductor, geochemical, clinical, nuclear, food, metallurgical, and petrochemical industries.
This book explores different aspects of LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry). It presents a large array of new analytical protocols for elemental or isotope analysis. LA-ICP-MS is a powerful tool that combines a sampling device able to remove very small quantities of material without leaving visible damage at the surface of an object. Furthermore, it functions as a sensitive analytical instrument that measures, within a few seconds, a wide range of isotopes in inorganic samples. Determining the elemental or the isotopic composition of ancient material is essential to address questions related to ancient technology or provenance and therefore aids archaeologists in reconstructing exchange networks for goods, people and ideas. Recent improvements of LA-ICP-MS have opened new avenues of research that are explored in this volume.