Delay Differential Equations

Delay Differential Equations

Author: Yang Kuang

Publisher: Academic Press

Published: 1993-03-05

Total Pages: 413

ISBN-13: 0080960022

DOWNLOAD EBOOK

Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.


Delay Differential Equations and Applications to Biology

Delay Differential Equations and Applications to Biology

Author: Fathalla A. Rihan

Publisher: Springer Nature

Published: 2021-08-19

Total Pages: 292

ISBN-13: 9811606269

DOWNLOAD EBOOK

This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.


Control and Optimization with PDE Constraints

Control and Optimization with PDE Constraints

Author: Kristian Bredies

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 221

ISBN-13: 3034806310

DOWNLOAD EBOOK

Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton–Jacobi–Bellmann equations, issues in optimization and control of stochastic partial differential equations, reduced-order models and domain decomposition, discretization error estimates for optimal control problems, and control of quantum-dynamical systems. These contributions originate from the “International Workshop on Control and Optimization of PDEs” in Mariatrost in October 2011. This book is an excellent resource for students and researchers in control or optimization of differential equations. Readers interested in theory or in numerical algorithms will find this book equally useful.


Introduction to the Theory and Applications of Functional Differential Equations

Introduction to the Theory and Applications of Functional Differential Equations

Author: V. Kolmanovskii

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 648

ISBN-13: 9401719659

DOWNLOAD EBOOK

This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.


Applications of Nonlinear Dynamics To Developmental Process Modeling

Applications of Nonlinear Dynamics To Developmental Process Modeling

Author: Karl M. Newell

Publisher: Psychology Press

Published: 2014-03-05

Total Pages: 365

ISBN-13: 1317779118

DOWNLOAD EBOOK

There has been an increasing interest in the application of dynamical systems to the study of development over the last decade. The explosion of the dynamical systems framework in the physical and biological sciences has opened the door to a new Zeitgeist for studying development. This appeal to dynamical systems by developmentalists is natural given the intuitive links between the established fundamental problems of development and the conceptual and operational scope of nonlinear dynamical systems. This promise of a new approach and framework within which to study development has led to some progress in recent years but also a growing appreciation of the difficulty of both fully examining the new metaphor and realizing its potential. Divided into 4 parts, this book is a result of a recent conference on dynamical systems and development held at Pennsylvania State University. The first 3 parts focus on the content domains of development that have given most theoretical and empirical attention to the potential applications of dynamical systems--physical growth and movement, cognition, and communication. These parts show that a range of nonlinear models have been applied to a host of developmental phenomena. Part 4 highlights two particular methodological issues that hold important implications for the modeling of developmental phenomena with dynamical systems techniques.


Structured Population Models in Biology and Epidemiology

Structured Population Models in Biology and Epidemiology

Author: Pierre Magal

Publisher: Springer

Published: 2008-04-12

Total Pages: 314

ISBN-13: 3540782737

DOWNLOAD EBOOK

In this new century mankind faces ever more challenging environmental and publichealthproblems,suchaspollution,invasionbyexoticspecies,theem- gence of new diseases or the emergence of diseases into new regions (West Nile virus,SARS,Anthrax,etc.),andtheresurgenceofexistingdiseases(in?uenza, malaria, TB, HIV/AIDS, etc.). Mathematical models have been successfully used to study many biological, epidemiological and medical problems, and nonlinear and complex dynamics have been observed in all of those contexts. Mathematical studies have helped us not only to better understand these problems but also to ?nd solutions in some cases, such as the prediction and control of SARS outbreaks, understanding HIV infection, and the investi- tion of antibiotic-resistant infections in hospitals. Structuredpopulationmodelsdistinguishindividualsfromoneanother- cording to characteristics such as age, size, location, status, and movement, to determine the birth, growth and death rates, interaction with each other and with environment, infectivity, etc. The goal of structured population models is to understand how these characteristics a?ect the dynamics of these models and thus the outcomes and consequences of the biological and epidemiolo- cal processes. There is a very large and growing body of literature on these topics. This book deals with the recent and important advances in the study of structured population models in biology and epidemiology. There are six chapters in this book, written by leading researchers in these areas.


An Introduction to Structured Population Dynamics

An Introduction to Structured Population Dynamics

Author: J. M. Cushing

Publisher: SIAM

Published: 1998-01-01

Total Pages: 106

ISBN-13: 9781611970005

DOWNLOAD EBOOK

Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the data and the experimental documentation of model predictions. The author also discusses the use of discrete and continuous models and presents a general modeling theory for structured population dynamics. Cushing begins with an obvious point: individuals in biological populations differ with regard to their physical and behavioral characteristics and therefore in the way they interact with their environment. Studying this point effectively requires the use of structured models. Specific examples cited throughout support the valuable use of structured models. Included among these are important applications chosen to illustrate both the mathematical theories and biological problems that have received attention in recent literature.


Biological Delay Systems

Biological Delay Systems

Author: Norman MacDonald

Publisher: Cambridge University Press

Published: 2008-01-03

Total Pages: 256

ISBN-13: 9780521048163

DOWNLOAD EBOOK

In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for delays such as those due to gestation, maturation or transport. This book deals with a fundamental question in the analysis of the effects of delays, namely whether they affect the stability of steady states.