Analytical Fluid Dynamics

Analytical Fluid Dynamics

Author: George Emanuel

Publisher: CRC Press

Published: 2000-12-21

Total Pages: 805

ISBN-13: 1420036599

DOWNLOAD EBOOK

The second edition of Analytical Fluid Dynamics presents an expanded and updated treatment of inviscid and laminar viscous compressible flows from a theoretical viewpoint. It emphasizes basic assumptions, the physical aspects of flow, and the appropriate formulations of the governing equations for subsequent analytical treatment. Topics covered inc


Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics

Author: Atul Sharma

Publisher: Springer Nature

Published: 2021-08-26

Total Pages: 355

ISBN-13: 3030728846

DOWNLOAD EBOOK

This more-of-physics, less-of-math, insightful and comprehensive book simplifies computational fluid dynamics for readers with little knowledge or experience in heat transfer, fluid dynamics or numerical methods. The novelty of this book lies in the simplification of the level of mathematics in CFD by presenting physical law (instead of the traditional differential equations) and discrete (independent of continuous) math-based algebraic formulations. Another distinguishing feature of this book is that it effectively links theory with computer program (code). This is done with pictorial as well as detailed explanations of implementation of the numerical methodology. It also includes pedagogical aspects such as end-of-chapter problems and carefully designed examples to augment learning in CFD code-development, application and analysis. This book is a valuable resource for students in the fields of mechanical, chemical or aeronautical engineering.


Analytical Methods for Heat Transfer and Fluid Flow Problems

Analytical Methods for Heat Transfer and Fluid Flow Problems

Author: Bernhard Weigand

Publisher: Springer

Published: 2015-05-05

Total Pages: 320

ISBN-13: 3662465930

DOWNLOAD EBOOK

This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out examples were included.


Modeling and Analysis of Modern Fluid Problems

Modeling and Analysis of Modern Fluid Problems

Author: Liancun Zheng

Publisher: Academic Press

Published: 2017-04-26

Total Pages: 482

ISBN-13: 0128117591

DOWNLOAD EBOOK

Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2012-11-07

Total Pages: 458

ISBN-13: 0080982433

DOWNLOAD EBOOK

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .


Analytical Solutions for Transport Processes

Analytical Solutions for Transport Processes

Author: Günter Brenn

Publisher: Springer

Published: 2016-07-26

Total Pages: 306

ISBN-13: 3662514230

DOWNLOAD EBOOK

This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field.


Handbook of Computational Fluid Mechanics

Handbook of Computational Fluid Mechanics

Author: Roger Peyret

Publisher: Academic Press

Published: 1996

Total Pages: 479

ISBN-13: 0125530102

DOWNLOAD EBOOK

This handbook covers computational fluid dynamics from fundamentals to applications. This text provides a well documented critical survey of numerical methods for fluid mechanics, and gives a state-of-the-art description of computational fluid mechanics, considering numerical analysis, computer technology, and visualization tools. The chapters in this book are invaluable tools for reaching a deeper understanding of the problems associated with the calculation of fluid motion in various situations: inviscid and viscous, incompressible and compressible, steady and unsteady, laminar and turbulent flows, as well as simple and complex geometries. Each chapter includes a related bibliography Covers fundamentals and applications Provides a deeper understanding of the problems associated with the calculation of fluid motion


Principles of Computational Fluid Dynamics

Principles of Computational Fluid Dynamics

Author: Pieter Wesseling

Publisher: Springer Science & Business Media

Published: 2009-12-21

Total Pages: 651

ISBN-13: 3642051456

DOWNLOAD EBOOK

This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.