As we continue to build faster and fast. er computers, their performance is be coming increasingly dependent on the memory hierarchy. Both the clock speed of the machine and its throughput per clock depend heavily on the memory hierarchy. The time to complet. e a cache acce88 is oft. en the factor that det. er mines the cycle time. The effectiveness of the hierarchy in keeping the average cost of a reference down has a major impact on how close the sustained per formance is to the peak performance. Small changes in the performance of the memory hierarchy cause large changes in overall system performance. The strong growth of ruse machines, whose performance is more tightly coupled to the memory hierarchy, has created increasing demand for high performance memory systems. This trend is likely to accelerate: the improvements in main memory performance will be small compared to the improvements in processor performance. This difference will lead to an increasing gap between prOCe880r cycle time and main memory acce. time. This gap must be closed by improving the memory hierarchy. Computer architects have attacked this gap by designing machines with cache sizes an order of magnitude larger than those appearing five years ago. Microproce880r-based RISe systems now have caches that rival the size of those in mainframes and supercomputers.
Parallel processing offers a solution to the problem of providing the processing power necessary to help understand and master the complexity of natural phenomena and engineering structures. By taking several basic processing devices and connecting them together the potential exists of achieving a performance many times that of an individual device. However, building parallel application programs is today recognized as a highly complex activity requiring specialist skills and in-depth knowledge. PARLE is an international, European based conference which focuses on the parallel processing subdomain of informatics and information technology. It is intended to become THE European forum for interchange between experts in the parallel processing domain and to attract both industrial and academic participants with a technical programme designedto provide a balance between theory and practice. This volume contains the proceedings of PARLE '93. The PARLE conference came into existence in 1987 as an initiative from the ESPRIT I programme and the format was revised in 1991/92. PARLE '93 is the second conference with the new format and was held in Munich.
An authoritative book for hardware and software designers. Caches are by far the simplest and most effective mechanism for improving computer performance. This innovative book exposes the characteristics of performance-optimal single and multi-level cache hierarchies by approaching the cache design process through the novel perspective of minimizing execution times. It presents useful data on the relative performance of a wide spectrum of machines and offers empirical and analytical evaluations of the underlying phenomena. This book will help computer professionals appreciate the impact of caches and enable designers to maximize performance given particular implementation constraints.
This volume contains the complete set of tutorial papers presented at the 16th IFIP (International Federation for Information Processing) Working Group 7.3 International Symposium on Computer Performance Modelling, Measurement and Evaluation, and a number of tutorial papers presented at the 1993 ACM (Association for Computing Machinery) Special Interest Group METRICS Conference on Measurement and Modeling of Computer Systems. The principal goal of the volume is to present an overview of recent results in the field of modeling and performance evaluation of computer and communication systems. The wide diversity of applications and methodologies included in the tutorials attests to the breadth and richness of current research in the area of performance modeling. The tutorials may serve to introduce a reader to an unfamiliar research area, to unify material already known, or simply to illustrate the diversity of research in the field. The extensive bibliographies guide readers to additional sources for further reading.
The progress of science and technology has placed Queueing Theory among the most popular disciplines in applied mathematics, operations research, and engineering. Although queueing has been on the scientific market since the beginning of this century, it is still rapidly expanding by capturing new areas in technology. Advances in Queueing provides a comprehensive overview of problems in this enormous area of science and focuses on the most significant methods recently developed. Written by a team of 24 eminent scientists, the book examines stochastic, analytic, and generic methods such as approximations, estimates and bounds, and simulation. The first chapter presents an overview of classical queueing methods from the birth of queues to the seventies. It also contains the most comprehensive bibliography of books on queueing and telecommunications to date. Each of the following chapters surveys recent methods applied to classes of queueing systems and networks followed by a discussion of open problems and future research directions. Advances in Queueing is a practical reference that allows the reader quick access to the latest methods.
Computer organization and architecture is becoming an increasingly important core subject in the areas of computer science and its applications, and information technology constantly steers the relentless revolution going on in this discipline. This textbook demystifies the state of the art using a simple and step-by-step development from traditional fundamentals to the most advanced concepts entwined with this subject, maintaining a reasonable balance among various theoretical principles, numerous design approaches, and their actual practical implementations. Being driven by the diversified knowledge gained directly from working in the constantly changing environment of the information technology (IT) industry, the author sets the stage by describing the modern issues in different areas of this subject. He then continues to effectively provide a comprehensive source of material with exciting new developments using a wealth of concrete examples related to recent regulatory changes in the modern design and architecture of different categories of computer systems associated with real-life instances as case studies, ranging from micro to mini, supermini, mainframes, cluster architectures, massively parallel processing (MPP) systems, and even supercomputers with commodity processors. Many of the topics that are briefly discussed in this book to conserve space for new materials are elaborately described from the design perspective to their ultimate practical implementations with representative schematic diagrams available on the book’s website. Key Features Microprocessor evolutions and their chronological improvements with illustrations taken from Intel, Motorola, and other leading families Multicore concept and subsequent multicore processors, a new standard in processor design Cluster architecture, a vibrant organizational and architectural development in building up massively distributed/parallel systems InfiniBand, a high-speed link for use in cluster system architecture providing a single-system image FireWire, a high-speed serial bus used for both isochronous real-time data transfer and asynchronous applications, especially needed in multimedia and mobile phones Evolution of embedded systems and their specific characteristics Real-time systems and their major design issues in brief Improved main memory technologies with their recent releases of DDR2, DDR3, Rambus DRAM, and Cache DRAM, widely used in all types of modern systems, including large clusters and high-end servers DVD optical disks and flash drives (pen drives) RAID, a common approach to configuring multiple-disk arrangements used in large server-based systems A good number of problems along with their solutions on different topics after their delivery Exhaustive material with respective figures related to the entire text to illustrate many of the computer design, organization, and architecture issues with examples are available online at http://crcpress.com/9780367255732 This book serves as a textbook for graduate-level courses for computer science engineering, information technology, electrical engineering, electronics engineering, computer science, BCA, MCA, and other similar courses.
The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more
The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses the issues mentioned above. It begins with a global introduction, from the high-level view to the lowest common denominator (the chip itself), then moves on to the three main building blocks of an SOC (processor, memory, and interconnect). Next is an overview of what makes SOC unique (its customization ability and the applications that drive it). The final chapter presents future challenges for system design and SOC possibilities.