This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
This undergraduate textbook on Linear Algebra and n-Dimensional Geometry, in a self-teaching style, is invaluable for sophomore level undergraduates in mathematics, engineering, business, and the sciences. These are classical subjects on which there are many mathematics books in theorem-proof style, but this unique volume has its focus on developing the mathematical modeling as well as computational and algorithmic skills in students at this level. The explanations in this book are detailed, lucid, and supported with numerous well-constructed examples to capture the interest and encourage the student to master the material.
Why This Book: The theory of von Neumann algebras has been growing in leaps and bounds in the last 20 years. It has always had strong connections with ergodic theory and mathematical physics. It is now beginning to make contact with other areas such as differential geometry and K-Theory. There seems to be a strong case for putting together a book which (a) introduces a reader to some of the basic theory needed to appreciate the recent advances, without getting bogged down by too much technical detail; (b) makes minimal assumptions on the reader's background; and (c) is small enough in size to not test the stamina and patience of the reader. This book tries to meet these requirements. In any case, it is just what its title proclaims it to be -- an invitation to the exciting world of von Neumann algebras. It is hoped that after perusing this book, the reader might be tempted to fill in the numerous (and technically, capacious) gaps in this exposition, and to delve further into the depths of the theory. For the expert, it suffices to mention here that after some preliminaries, the book commences with the Murray - von Neumann classification of factors, proceeds through the basic modular theory to the III). classification of Connes, and concludes with a discussion of crossed-products, Krieger's ratio set, examples of factors, and Takesaki's duality theorem.
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.
Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.
This is the second edition of the best-selling introduction to linear algebra. Presupposing no knowledge beyond calculus, it provides a thorough treatment of all the basic concepts, such as vector space, linear transformation and inner product. The concept of a quotient space is introduced and related to solutions of linear system of equations, and a simplified treatment of Jordan normal form is given. Numerous applications of linear algebra are described, including systems of linear recurrence relations, systems of linear differential equations, Markov processes, and the Method of Least Squares. An entirely new chapter on linear programing introduces the reader to the simplex algorithm with emphasis on understanding the theory behind it. The book is addressed to students who wish to learn linear algebra, as well as to professionals who need to use the methods of the subject in their own fields.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.