VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure

Author: Andrew B. Kahng

Publisher: Springer Nature

Published: 2022-06-14

Total Pages: 329

ISBN-13: 3030964159

DOWNLOAD EBOOK

The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota


Introduction to VLSI Design

Introduction to VLSI Design

Author: Eugene D. Fabricius

Publisher: McGraw-Hill Companies

Published: 1990

Total Pages: 148

ISBN-13:

DOWNLOAD EBOOK

This solutions manual is for undergraduate VLSI design courses. Its emphasis is on the relationship between circuit layout design and electrical system performance, and it covers topics such as the basic physics of devices and introductory VLSI computer systems in CMOS and NMOS.


Practical Problems in VLSI Physical Design Automation

Practical Problems in VLSI Physical Design Automation

Author: Sung Kyu Lim

Publisher: Springer Science & Business Media

Published: 2008-07-31

Total Pages: 292

ISBN-13: 1402066279

DOWNLOAD EBOOK

Practical Problems in VLSI Physical Design Automation contains problems and solutions related to various well-known algorithms used in VLSI physical design automation. Dr. Lim believes that the best way to learn new algorithms is to walk through a small example by hand. This knowledge will greatly help understand, analyze, and improve some of the well-known algorithms. The author has designed and taught a graduate-level course on physical CAD for VLSI at Georgia Tech. Over the years he has written his homework with such a focus and has maintained typeset version of the solutions.


VLSI Physical Design Automation

VLSI Physical Design Automation

Author: Sadiq M. Sait

Publisher: World Scientific

Published: 1999

Total Pages: 506

ISBN-13: 9789810238834

DOWNLOAD EBOOK

&Quot;VLSI Physical Design Automation: Theory and Practice is an essential introduction for senior undergraduates, postgraduates and anyone starting work in the field of CAD for VLSI. It covers all aspects of physical design, together with such related areas as automatic cell generation, silicon compilation, layout editors and compaction. A problem-solving approach is adopted and each solution is illustrated with examples. Each topic is treated in a standard format: Problem Definition, Cost Functions and Constraints, Possible Approaches and Latest Developments."--BOOK JACKET.


VLSI Design

VLSI Design

Author: K. Lal Kishore

Publisher: I. K. International Pvt Ltd

Published: 2013-12-30

Total Pages: 415

ISBN-13: 9380026676

DOWNLOAD EBOOK

Aimed primarily for undergraduate students pursuing courses in VLSI design, the book emphasizes the physical understanding of underlying principles of the subject. It not only focuses on circuit design process obeying VLSI rules but also on technological aspects of Fabrication. VHDL modeling is discussed as the design engineer is expected to have good knowledge of it. Various Modeling issues of VLSI devices are focused which includes necessary device physics to the required level. With such an in-depth coverage and practical approach practising engineers can also use this as ready reference. Key features: Numerous practical examples. Questions with solutions that reflect the common doubts a beginner encounters. Device Fabrication Technology. Testing of CMOS device BiCMOS Technological issues. Industry trends. Emphasis on VHDL.


Introduction to Physical Integration and Tapeout in VLSIs

Introduction to Physical Integration and Tapeout in VLSIs

Author: Patrick Lee

Publisher: Lulu.com

Published: 2010-04-27

Total Pages: 160

ISBN-13: 0557401089

DOWNLOAD EBOOK

This book covers issues and solutions in the physical integration and tapeout management for VLSI design. Chapter 1 gives the overview. Chapter 2 shows detailed techniques for physical design. Chapter 3 provides CAD flows. Chapter 4 discusses on-chip interconnects. A glossary of keywords is provided at the end.


Introduction to VLSI Systems

Introduction to VLSI Systems

Author: Ming-Bo Lin

Publisher: CRC Press

Published: 2011-11-28

Total Pages: 890

ISBN-13: 1439897328

DOWNLOAD EBOOK

With the advance of semiconductors and ubiquitous computing, the use of system-on-a-chip (SoC) has become an essential technique to reduce product cost. With this progress and continuous reduction of feature sizes, and the development of very large-scale integration (VLSI) circuits, addressing the harder problems requires fundamental understanding


VLSI Design Methodology Development

VLSI Design Methodology Development

Author: Thomas Dillinger

Publisher: Prentice Hall

Published: 2019-06-17

Total Pages: 857

ISBN-13: 0135657687

DOWNLOAD EBOOK

The Complete, Modern Tutorial on Practical VLSI Chip Design, Validation, and Analysis As microelectronics engineers design complex chips using existing circuit libraries, they must ensure correct logical, physical, and electrical properties, and prepare for reliable foundry fabrication. VLSI Design Methodology Development focuses on the design and analysis steps needed to perform these tasks and successfully complete a modern chip design. Microprocessor design authority Tom Dillinger carefully introduces core concepts, and then guides engineers through modeling, functional design validation, design implementation, electrical analysis, and release to manufacturing. Writing from the engineer’s perspective, he covers underlying EDA tool algorithms, flows, criteria for assessing project status, and key tradeoffs and interdependencies. This fresh and accessible tutorial will be valuable to all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. Reflect complexity, cost, resources, and schedules in planning a chip design project Perform hierarchical design decomposition, floorplanning, and physical integration, addressing DFT, DFM, and DFY requirements Model functionality and behavior, validate designs, and verify formal equivalency Apply EDA tools for logic synthesis, placement, and routing Analyze timing, noise, power, and electrical issues Prepare for manufacturing release and bring-up, from mastering ECOs to qualification This guide is for all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. It is applicable to engineering teams undertaking new projects and migrating existing designs to new technologies.