An Introduction to K-Theory for C*-Algebras

An Introduction to K-Theory for C*-Algebras

Author: M. Rørdam

Publisher: Cambridge University Press

Published: 2000-07-20

Total Pages: 260

ISBN-13: 9780521789448

DOWNLOAD EBOOK

This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.


The $K$-book

The $K$-book

Author: Charles A. Weibel

Publisher: American Mathematical Soc.

Published: 2013-06-13

Total Pages: 634

ISBN-13: 0821891324

DOWNLOAD EBOOK

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr


K-theory and C*-algebras

K-theory and C*-algebras

Author: Niels Erik Wegge-Olsen

Publisher: Oxford University Press on Demand

Published: 1993

Total Pages: 370

ISBN-13: 9780198596943

DOWNLOAD EBOOK

K-theory is often considered a complicated mathematical theory for specialists only. This book is an accessible introduction to the basics and provides detailed explanations of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed. The book then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. Of specific interest to algebraists and geometrists, the book aims to give full instruction. No details are left out in the presentation and many instructive and generously hinted exercises are provided. Apart from K-theory, this book offers complete and self contained expositions of important advanced C*-algebraic constructions like tensor products, multiplier algebras and Hilbert modules.


K-Theory for Operator Algebras

K-Theory for Operator Algebras

Author: Bruce Blackadar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 1461395720

DOWNLOAD EBOOK

K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.


An Introduction to C*-Algebras and the Classification Program

An Introduction to C*-Algebras and the Classification Program

Author: Karen R. Strung

Publisher: Springer Nature

Published: 2020-12-15

Total Pages: 322

ISBN-13: 3030474658

DOWNLOAD EBOOK

This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.


C*-Algebras by Example

C*-Algebras by Example

Author: Kenneth R. Davidson

Publisher: American Mathematical Society, Fields Institute

Published: 2023-10-04

Total Pages: 325

ISBN-13: 1470475081

DOWNLOAD EBOOK

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.


C*-Algebras and Operator Theory

C*-Algebras and Operator Theory

Author: Gerald J. Murphy

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 297

ISBN-13: 0080924964

DOWNLOAD EBOOK

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.


An Algebraic Introduction to K-Theory

An Algebraic Introduction to K-Theory

Author: Bruce A. Magurn

Publisher: Cambridge University Press

Published: 2002-05-20

Total Pages: 704

ISBN-13: 1107079446

DOWNLOAD EBOOK

This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.


Operator Algebras

Operator Algebras

Author: Bruce Blackadar

Publisher: Springer Science & Business Media

Published: 2006-03-09

Total Pages: 530

ISBN-13: 3540285172

DOWNLOAD EBOOK

This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.


An Introduction to the Classification of Amenable C*-algebras

An Introduction to the Classification of Amenable C*-algebras

Author: Huaxin Lin

Publisher: World Scientific

Published: 2001

Total Pages: 336

ISBN-13: 9789812799883

DOWNLOAD EBOOK

The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oeu -algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C Oeu -algebras OCo the first such attempt. The first three chapters present the basics of the theory of C Oeu -algebras which are particularly important to the theory of the classification of amenable C Oeu -algebras. Chapter 4 otters the classification of the so-called AT -algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C Oeu -algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH -algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C Oeu -algebras. Besides being as an introduction to the theory of the classification of amenable C Oeu -algebras, it is a comprehensive reference for those more familiar with the subject. Sample Chapter(s). Chapter 1.1: Banach algebras (260 KB). Chapter 1.2: C*-algebras (210 KB). Chapter 1.3: Commutative C*-algebras (212 KB). Chapter 1.4: Positive cones (207 KB). Chapter 1.5: Approximate identities, hereditary C*-subalgebras and quotients (230 KB). Chapter 1.6: Positive linear functionals and a Gelfand-Naimark theorem (235 KB). Chapter 1.7: Von Neumann algebras (234 KB). Chapter 1.8: Enveloping von Neumann algebras and the spectral theorem (217 KB). Chapter 1.9: Examples of C*-algebras (270 KB). Chapter 1.10: Inductive limits of C*-algebras (252 KB). Chapter 1.11: Exercises (220 KB). Chapter 1.12: Addenda (168 KB). Contents: The Basics of C Oeu -Algebras; Amenable C Oeu -Algebras and K -Theory; AF- Algebras and Ranks of C Oeu -Algebras; Classification of Simple AT -Algebras; C Oeu -Algebra Extensions; Classification of Simple Amenable C Oeu -Algebras. Readership: Researchers and graduate students in operator algebras."