Elliptic Functions and Applications

Elliptic Functions and Applications

Author: Derek F. Lawden

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 349

ISBN-13: 147573980X

DOWNLOAD EBOOK

The subject matter of this book formed the substance of a mathematical se am which was worked by many of the great mathematicians of the last century. The mining metaphor is here very appropriate, for the analytical tools perfected by Cauchy permitted the mathematical argument to penetra te to unprecedented depths over a restricted region of its domain and enabled mathematicians like Abel, Jacobi, and Weierstrass to uncover a treasurehouse of results whose variety, aesthetic appeal, and capacity for arousing our astonishment have not since been equaled by research in any other area. But the circumstance that this theory can be applied to solve problems arising in many departments of science and engineering graces the topic with an additional aura and provides a powerful argument for including it in university courses for students who are expected to use mathematics as a tool for technological investigations in later life. Unfortunately, since the status of university staff is almost wholly determined by their effectiveness as research workers rather than as teachers, the content of undergraduate courses tends to reflect those academic research topics which are currently popular and bears little relationship to the future needs of students who are themselves not destined to become university teachers. Thus, having been comprehensively explored in the last century and being undoubtedly difficult .


Development of Elliptic Functions According to Ramanujan

Development of Elliptic Functions According to Ramanujan

Author: K. Venkatachaliengar

Publisher: World Scientific

Published: 2012

Total Pages: 185

ISBN-13: 9814366455

DOWNLOAD EBOOK

This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.


Lectures on the Theory of Elliptic Functions

Lectures on the Theory of Elliptic Functions

Author: Harris Hancock

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 538

ISBN-13: 9780486438252

DOWNLOAD EBOOK

Prized for its extensive coverage of classical material, this text is also well regarded for its unusual fullness of treatment and its comprehensive discussion of both theory and applications. The author developes the theory of elliptic integrals, beginning with formulas establishing the existence, formation, and treatment of all three types, and concluding with the most general description of these integrals in terms of the Riemann surface. The theories of Legendre, Abel, Jacobi, and Weierstrass are developed individually and correlated with the universal laws of Riemann. The important contributory theorems of Hermite and Liouville are also fully developed. 1910 ed.