Along with the extraordinary growth in the derivatives market over the last decade, the impact of model choice, and model parameter usage, has become a major source of valuation uncertainty. This book concentrates on equity derivatives and charts, step by step, how key assumptions on the dynamics of stocks impact on the value of exotics. The presentation is technical, but maintains a strong focus on intuition and practical application./a
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
An essential guide to real-world derivatives trading FX Derivatives Trader School is the definitive guide to the technical and practical knowledge required for successful foreign exchange derivatives trading. Accessible in style and comprehensive in coverage, the book guides the reader through both basic and advanced derivative pricing and risk management topics. The basics of financial markets and trading are covered, plus practical derivatives mathematics is introduced with reference to real-world trading and risk management. Derivative contracts are covered in detail from a trader's perspective using risk profiles and pricing under different derivative models. Analysis is approached generically to enable new products to be understood by breaking the risk into fundamental building blocks. To assist with learning, the book also contains Excel practicals which will deepen understanding and help build useful skills. The book covers of a wide variety of topics, including: Derivative exposures within risk management Volatility surface construction Implied volatility and correlation risk Practical tips for students on trading internships and junior traders Market analysis techniques FX derivatives trading requires mathematical aptitude, risk management skill, and the ability to work quickly and accurately under pressure. There is a tremendous gap between option pricing formulas and the knowledge required to be a successful derivatives trader. FX Derivatives Trader School is unique in bridging that gap.
Monte Carlo methods have been used for decades in physics, engineering, statistics, and other fields. Monte Carlo Simulation and Finance explains the nuts and bolts of this essential technique used to value derivatives and other securities. Author and educator Don McLeish examines this fundamental process, and discusses important issues, including specialized problems in finance that Monte Carlo and Quasi-Monte Carlo methods can help solve and the different ways Monte Carlo methods can be improved upon. This state-of-the-art book on Monte Carlo simulation methods is ideal for finance professionals and students. Order your copy today.
This is a comprehensive introduction to the brand new theory of conic finance, also referred to as the two-price theory, which determines bid and ask prices in a consistent and fundamentally motivated manner. Whilst theories of one price classically eliminate all risk, the concept of acceptable risks is critical to the foundations of the two-price theory which sees risk elimination as typically unattainable in a modern financial economy. Practical examples and case studies provide the reader with a comprehensive introduction to the fundamentals of the theory, a variety of advanced quantitative models, and numerous real-world applications, including portfolio theory, option positioning, hedging, and trading contexts. This book offers a quantitative and practical approach for readers familiar with the basics of mathematical finance to allow them to boldly go where no quant has gone before.
Praise for Energy and Power Risk Management "Energy and Power Risk Management identifies and addresses the key issues in the development of the turbulent energy industry and the challenges it poses to market players. An insightful and far-reaching book written by two renowned professionals." -Helyette Geman, Professor of Finance University Paris Dauphine and ESSEC "The most up-to-date and comprehensive book on managing energy price risk in the natural gas and power markets. An absolute imperative for energy traders and energy risk management professionals." -Vincent Kaminski, Managing Director Citadel Investment Group LLC "Eydeland and Wolyniec's work does an excellent job of outlining the methods needed to measure and manage risk in the volatile energy market." -Gerald G. Fleming, Vice President, Head of East Power Trading, TXU Energy Trading "This book combines academic rigor with real-world practicality. It is a must-read for anyone in energy risk management or asset valuation." -Ron Erd, Senior Vice President American Electric Power
This book presents a major innovation in the interest rate space. It explains a financially motivated extension of the LIBOR Market model which accurately reproduces the prices for plain vanilla hedging instruments (swaptions and caplets) of all strikes and maturities produced by the SABR model. The authors show how to accurately recover the whole of the SABR smile surface using their extension of the LIBOR market model. This is not just a new model, this is a new way of option pricing that takes into account the need to calibrate as accurately as possible to the plain vanilla reference hedging instruments and the need to obtain prices and hedges in reasonable time whilst reproducing a realistic future evolution of the smile surface. It removes the hard choice between accuracy and time because the framework that the authors provide reproduces today's market prices of plain vanilla options almost exactly and simultaneously gives a reasonable future evolution for the smile surface. The authors take the SABR model as the starting point for their extension of the LMM because it is a good model for European options. The problem, however with SABR is that it treats each European option in isolation and the processes for the various underlyings (forward and swap rates) do not talk to each other so it isn't obvious how to relate these processes into the dynamics of the whole yield curve. With this new model, the authors bring the dynamics of the various forward rates and stochastic volatilities under a single umbrella. To ensure the absence of arbitrage they derive drift adjustments to be applied to both the forward rates and their volatilities. When this is completed, complex derivatives that depend on the joint realisation of all relevant forward rates can now be priced. Contents THE THEORETICAL SET-UP The Libor Market model The SABR Model The LMM-SABR Model IMPLEMENTATION AND CALIBRATION Calibrating the LMM-SABR model to Market Caplet prices Calibrating the LMM/SABR model to Market Swaption Prices Calibrating the Correlation Structure EMPIRICAL EVIDENCE The Empirical problem Estimating the volatility of the forward rates Estimating the correlation structure Estimating the volatility of the volatility HEDGING Hedging the Volatility Structure Hedging the Correlation Structure Hedging in conditions of market stress