Almost-Periodic Functions and Functional Equations

Almost-Periodic Functions and Functional Equations

Author: L. Amerio

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 191

ISBN-13: 1475712545

DOWNLOAD EBOOK

The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application.


Almost Periodic Type Functions and Ergodicity

Almost Periodic Type Functions and Ergodicity

Author: Zhang Chuanyi

Publisher: Springer Science & Business Media

Published: 2003-06-30

Total Pages: 372

ISBN-13: 9781402011580

DOWNLOAD EBOOK

The theory of almost periodic functions was first developed by the Danish mathematician H. Bohr during 1925-1926. Then Bohr's work was substantially extended by S. Bochner, H. Weyl, A. Besicovitch, J. Favard, J. von Neumann, V. V. Stepanov, N. N. Bogolyubov, and oth ers. Generalization of the classical theory of almost periodic functions has been taken in several directions. One direction is the broader study of functions of almost periodic type. Related this is the study of ergodic ity. It shows that the ergodicity plays an important part in the theories of function spectrum, semigroup of bounded linear operators, and dynamical systems. The purpose of this book is to develop a theory of almost pe riodic type functions and ergodicity with applications-in particular, to our interest-in the theory of differential equations, functional differen tial equations and abstract evolution equations. The author selects these topics because there have been many (excellent) books on almost periodic functions and relatively, few books on almost periodic type and ergodicity. The author also wishes to reflect new results in the book during recent years. The book consists of four chapters. In the first chapter, we present a basic theory of four almost periodic type functions. Section 1. 1 is about almost periodic functions. To make the reader easily learn the almost periodicity, we first discuss it in scalar case. After studying a classical theory for this case, we generalize it to finite dimensional vector-valued case, and finally, to Banach-valued (including Hilbert-valued) situation.


Almost Periodic Solutions of Impulsive Differential Equations

Almost Periodic Solutions of Impulsive Differential Equations

Author: Gani T. Stamov

Publisher: Springer Science & Business Media

Published: 2012-03-09

Total Pages: 235

ISBN-13: 3642275451

DOWNLOAD EBOOK

In the present book a systematic exposition of the results related to almost periodic solutions of impulsive differential equations is given and the potential for their application is illustrated.


Almost Periodic Oscillations and Waves

Almost Periodic Oscillations and Waves

Author: Constantin Corduneanu

Publisher: Springer Science & Business Media

Published: 2009-04-29

Total Pages: 313

ISBN-13: 0387098194

DOWNLOAD EBOOK

This text is well-designed with respect to the exposition from the preliminary to the more advanced and the applications interwoven throughout. It provides the essential foundations for the theory as well as the basic facts relating to almost periodicity. In six structured and self-contained chapters, the author unifies the treatment of various classes of almost periodic functions, while uniquely addressing oscillations and waves in the almost periodic case. This is the first text to present the latest results in almost periodic oscillations and waves. The presentation level and inclusion of several clearly presented proofs make this work ideal for graduate students in engineering and science. The concept of almost periodicity is widely applicable to continuuum mechanics, electromagnetic theory, plasma physics, dynamical systems, and astronomy, which makes the book a useful tool for mathematicians and physicists.


Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces

Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces

Author: Toka Diagana

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 312

ISBN-13: 3319008498

DOWNLOAD EBOOK

This book presents a comprehensive introduction to the concepts of almost periodicity, asymptotic almost periodicity, almost automorphy, asymptotic almost automorphy, pseudo-almost periodicity, and pseudo-almost automorphy as well as their recent generalizations. Some of the results presented are either new or else cannot be easily found in the mathematical literature. Despite the noticeable and rapid progress made on these important topics, the only standard references that currently exist on those new classes of functions and their applications are still scattered research articles. One of the main objectives of this book is to close that gap. The prerequisites for the book is the basic introductory course in real analysis. Depending on the background of the student, the book may be suitable for a beginning graduate and/or advanced undergraduate student. Moreover, it will be of a great interest to researchers in mathematics as well as in engineering, in physics, and related areas. Further, some parts of the book may be used for various graduate and undergraduate courses.


Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations

Author: V.I. Arnold

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 1461210372

DOWNLOAD EBOOK

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.


Almost Periodic Stochastic Processes

Almost Periodic Stochastic Processes

Author: Paul H. Bezandry

Publisher: Springer Science & Business Media

Published: 2011-04-07

Total Pages: 247

ISBN-13: 1441994769

DOWNLOAD EBOOK

This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.


Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Author: Gaston M. N'Guérékata

Publisher: Springer

Published: 2021-05-29

Total Pages: 134

ISBN-13: 9783030737177

DOWNLOAD EBOOK

This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.