Algorithms for Minimization Without Derivatives

Algorithms for Minimization Without Derivatives

Author: Richard P. Brent

Publisher: Courier Corporation

Published: 2013-06-10

Total Pages: 210

ISBN-13: 0486143686

DOWNLOAD EBOOK

DIVOutstanding text for graduate students and research workers proposes improvements to existing algorithms, extends their related mathematical theories, and offers details on new algorithms for approximating local and global minima. /div


Large-Scale Nonlinear Optimization

Large-Scale Nonlinear Optimization

Author: Gianni Pillo

Publisher: Springer Science & Business Media

Published: 2006-06-03

Total Pages: 297

ISBN-13: 0387300651

DOWNLOAD EBOOK

This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.


Introduction to Derivative-Free Optimization

Introduction to Derivative-Free Optimization

Author: Andrew R. Conn

Publisher: SIAM

Published: 2009-04-16

Total Pages: 276

ISBN-13: 0898716683

DOWNLOAD EBOOK

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.


Algorithms for Optimization

Algorithms for Optimization

Author: Mykel J. Kochenderfer

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 521

ISBN-13: 0262039427

DOWNLOAD EBOOK

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.


Derivative-Free and Blackbox Optimization

Derivative-Free and Blackbox Optimization

Author: Charles Audet

Publisher: Springer

Published: 2017-12-02

Total Pages: 307

ISBN-13: 3319689134

DOWNLOAD EBOOK

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.


MM Optimization Algorithms

MM Optimization Algorithms

Author: Kenneth Lange

Publisher: SIAM

Published: 2016-07-11

Total Pages: 229

ISBN-13: 1611974399

DOWNLOAD EBOOK

MM Optimization Algorithms?offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.? The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.?


Algorithms for Optimization

Algorithms for Optimization

Author: Mykel J. Kochenderfer

Publisher: MIT Press

Published: 2019-03-26

Total Pages: 521

ISBN-13: 0262351404

DOWNLOAD EBOOK

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.


Numerical Algorithms

Numerical Algorithms

Author: Justin Solomon

Publisher: CRC Press

Published: 2015-06-24

Total Pages: 400

ISBN-13: 1482251892

DOWNLOAD EBOOK

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig


Genetic and Evolutionary Computation — GECCO 2004

Genetic and Evolutionary Computation — GECCO 2004

Author: Kalyanmoy Deb

Publisher: Springer

Published: 2004-06-01

Total Pages: 1490

ISBN-13: 3540248544

DOWNLOAD EBOOK

The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.