Statistical Mechanics: Algorithms and Computations

Statistical Mechanics: Algorithms and Computations

Author: Werner Krauth

Publisher: Oxford University Press, USA

Published: 2006-09-14

Total Pages: 355

ISBN-13: 0198515367

DOWNLOAD EBOOK

This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The book is completely self-contained and graphs and tables can readily be reproduced, requiring minimal computer code. Most sections begin at an elementary level and lead on to the rich and difficult problems of contemporary computational and statistical physics. The book will be of interest to a wide range of students, teachers and researchers in physics and the neighbouring sciences. An accompanying CD allows incorporation of the book's content (illustrations, tables, schematic programs) into the reader's own presentations.


Parallel Processing and Parallel Algorithms

Parallel Processing and Parallel Algorithms

Author: Seyed H Roosta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 579

ISBN-13: 1461212200

DOWNLOAD EBOOK

Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.


Parallel Algorithms for Matrix Computations

Parallel Algorithms for Matrix Computations

Author: K. Gallivan

Publisher: SIAM

Published: 1990-01-01

Total Pages: 207

ISBN-13: 9781611971705

DOWNLOAD EBOOK

Describes a selection of important parallel algorithms for matrix computations. Reviews the current status and provides an overall perspective of parallel algorithms for solving problems arising in the major areas of numerical linear algebra, including (1) direct solution of dense, structured, or sparse linear systems, (2) dense or structured least squares computations, (3) dense or structured eigenvaluen and singular value computations, and (4) rapid elliptic solvers. The book emphasizes computational primitives whose efficient execution on parallel and vector computers is essential to obtain high performance algorithms. Consists of two comprehensive survey papers on important parallel algorithms for solving problems arising in the major areas of numerical linear algebra--direct solution of linear systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic solvers, plus an extensive up-to-date bibliography (2,000 items) on related research.


Triangulations

Triangulations

Author: Jesus De Loera

Publisher: Springer Science & Business Media

Published: 2010-08-16

Total Pages: 547

ISBN-13: 3642129714

DOWNLOAD EBOOK

Triangulations presents the first comprehensive treatment of the theory of secondary polytopes and related topics. The text discusses the geometric structure behind the algorithms and shows new emerging applications, including hundreds of illustrations, examples, and exercises.


Fundamental Algorithms in Computational Fluid Dynamics

Fundamental Algorithms in Computational Fluid Dynamics

Author: Thomas H. Pulliam

Publisher: Springer Science & Business Media

Published: 2014-03-31

Total Pages: 220

ISBN-13: 3319050532

DOWNLOAD EBOOK

Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.


Algorithms Unplugged

Algorithms Unplugged

Author: Berthold Vöcking

Publisher: Springer Science & Business Media

Published: 2010-12-10

Total Pages: 389

ISBN-13: 3642153283

DOWNLOAD EBOOK

Algorithms specify the way computers process information and how they execute tasks. Many recent technological innovations and achievements rely on algorithmic ideas – they facilitate new applications in science, medicine, production, logistics, traffic, communi¬cation and entertainment. Efficient algorithms not only enable your personal computer to execute the newest generation of games with features unimaginable only a few years ago, they are also key to several recent scientific breakthroughs – for example, the sequencing of the human genome would not have been possible without the invention of new algorithmic ideas that speed up computations by several orders of magnitude. The greatest improvements in the area of algorithms rely on beautiful ideas for tackling computational tasks more efficiently. The problems solved are not restricted to arithmetic tasks in a narrow sense but often relate to exciting questions of nonmathematical flavor, such as: How can I find the exit out of a maze? How can I partition a treasure map so that the treasure can only be found if all parts of the map are recombined? How should I plan my trip to minimize cost? Solving these challenging problems requires logical reasoning, geometric and combinatorial imagination, and, last but not least, creativity – the skills needed for the design and analysis of algorithms. In this book we present some of the most beautiful algorithmic ideas in 41 articles written in colloquial, nontechnical language. Most of the articles arose out of an initiative among German-language universities to communicate the fascination of algorithms and computer science to high-school students. The book can be understood without any prior knowledge of algorithms and computing, and it will be an enlightening and fun read for students and interested adults.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Parallel Algorithms in Computational Science and Engineering

Parallel Algorithms in Computational Science and Engineering

Author: Ananth Grama

Publisher: Springer Nature

Published: 2020-07-06

Total Pages: 421

ISBN-13: 3030437361

DOWNLOAD EBOOK

This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.


Matrix Algorithms

Matrix Algorithms

Author: G. W. Stewart

Publisher: SIAM

Published: 1998-08-01

Total Pages: 476

ISBN-13: 0898714141

DOWNLOAD EBOOK

This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.