Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics

Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics

Author: Mahir Can

Publisher: Springer

Published: 2014-06-11

Total Pages: 360

ISBN-13: 149390938X

DOWNLOAD EBOOK

This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semi groups are strongly π-regular. Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings and algebraic combinatorics merged under the umbrella of algebraic monoids.


Advances in Algebra

Advances in Algebra

Author: Jörg Feldvoss

Publisher: Springer

Published: 2019-02-27

Total Pages: 328

ISBN-13: 3030115216

DOWNLOAD EBOOK

This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.


Representation Theory of Finite Monoids

Representation Theory of Finite Monoids

Author: Benjamin Steinberg

Publisher: Springer

Published: 2016-12-09

Total Pages: 324

ISBN-13: 3319439324

DOWNLOAD EBOOK

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.


Linear Algebraic Monoids

Linear Algebraic Monoids

Author: Lex E. Renner

Publisher: Springer Science & Business Media

Published: 2005-03-11

Total Pages: 272

ISBN-13: 9783540242413

DOWNLOAD EBOOK

The theory of linear algebraic monoids culminates in a coherent blend of algebraic groups, convex geometry, and semigroup theory. The book discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and abstract analogues. An explicit cell decomposition is constructed for the wonderful compactification, as is a universal deformation for any semisimple group. A final chapter summarizes important connections with other areas of algebra and geometry. The book will serve as a solid basis for further research. Open problems are discussed as they arise and many useful exercises are included.


Groups St Andrews 2005: Volume 2

Groups St Andrews 2005: Volume 2

Author: C. M. Campbell

Publisher: Cambridge University Press

Published: 2007-01-04

Total Pages: 443

ISBN-13: 0521694701

DOWNLOAD EBOOK

Selected papers from 'Groups St Andrews 2005' cover a wide spectrum of modern group theory.


Algebraic Combinatorics on Words

Algebraic Combinatorics on Words

Author: M. Lothaire

Publisher: Cambridge University Press

Published: 2002-04-18

Total Pages: 536

ISBN-13: 9780521812207

DOWNLOAD EBOOK

Comprehensive 2002 introduction to combinatorics on words for mathematicians and theoretical computer scientists.


Algebraic Graph Theory

Algebraic Graph Theory

Author: Ulrich Knauer

Publisher: Walter de Gruyter

Published: 2011-09-29

Total Pages: 325

ISBN-13: 311025509X

DOWNLOAD EBOOK

Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.


Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry

Author: Günter Ewald

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 378

ISBN-13: 1461240441

DOWNLOAD EBOOK

The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.


Lectures on Logarithmic Algebraic Geometry

Lectures on Logarithmic Algebraic Geometry

Author: Arthur Ogus

Publisher: Cambridge University Press

Published: 2018-11-08

Total Pages: 559

ISBN-13: 1107187737

DOWNLOAD EBOOK

A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.