Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.
NATIONAL BESTSELLER • The renowned theoretical physicist and national bestselling author of The God Equation details the developments in computer technology, artificial intelligence, medicine, space travel, and more, that are poised to happen over the next century. “Mind-bending…. [An] alternately fascinating and frightening book.” —San Francisco Chronicle Space elevators. Internet-enabled contact lenses. Cars that fly by floating on magnetic fields. This is the stuff of science fiction—it’s also daily life in the year 2100. Renowned theoretical physicist Michio Kaku considers how these inventions will affect the world economy, addressing the key questions: Who will have jobs? Which nations will prosper? Kaku interviews three hundred of the world’s top scientists—working in their labs on astonishing prototypes. He also takes into account the rigorous scientific principles that regulate how quickly, how safely, and how far technologies can advance. In Physics of the Future, Kaku forecasts a century of earthshaking advances in technology that could make even the last centuries’ leaps and bounds seem insignificant.
The definitive exploration of one of the most daring and consequential theories of our time, completely revised and updated to reflect the rapid advances in artificial intelligence and virtual reality Are we living in a simulation? MIT computer scientist Rizwan Virk draws from research and concepts from computer science, artificial intelligence, video games, quantum physics, and ancient mystics to explain why we may be living inside a simulated reality like the Matrix. Simulation theory explains some of the biggest mysteries of quantum and relativistic physics, such as quantum indeterminacy, parallel universes, and the integral nature of the speed of light, using information and computation. Virk shows how the evolution of our video games, including virtual reality, augmented reality, artificial intelligence, and quantum computing, will lead us to a technological singularity. We will reach the simulation point, where we can develop all-encompassing virtual worlds like the OASIS in Ready Player One or The Matrix—and in fact we are already likely inside such a simulation. While the idea sounds like science fiction, many scientists, engineers, and professors have given the simulation hypothesis serious consideration, including Elon Musk, Neil deGrasse Tyson, and Nick Bostrom. But the simulation hypothesis is not just a modern idea. Philosophers of all traditions have long contended that we are living in some kind of “illusion” and that there are other realities that we can access with our minds. The Simulation Hypothesis is the definitive book on simulation theory and is now completely updated to reflect the latest developments in artificial intelligence and virtual reality. Whether you are a computer scientist, a fan of science fiction like the Matrix movies, a video game enthusiast, a spiritual seeker, or simply a fan of mind-bending thought experiments, you will never look at the world the same way again.
A concise but informative overview of AI ethics and policy. Artificial intelligence, or AI for short, has generated a staggering amount of hype in the past several years. Is it the game-changer it's been cracked up to be? If so, how is it changing the game? How is it likely to affect us as customers, tenants, aspiring home-owners, students, educators, patients, clients, prison inmates, members of ethnic and sexual minorities, voters in liberal democracies? This book offers a concise overview of moral, political, legal and economic implications of AI. It covers the basics of AI's latest permutation, machine learning, and considers issues including transparency, bias, liability, privacy, and regulation.
This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.
NEW YORK TIMES BESTSELLER • The national bestselling author of The God Equation traverses the frontiers of astrophysics, artificial intelligence, and technology to offer a stunning vision of man's future in space, from settling Mars to traveling to distant galaxies. “Amazing … Kaku is in smooth perfect control of it the entire time.” —The Christian Science Monitor We are entering a new Golden Age of space exploration. With irrepressible enthusiasm and a deep understanding of the cutting-edge research in space travel, world-renowned physicist and futurist Dr. Michio Kaku presents a compelling vision of how humanity may develop a sustainable civilization in outer space. He reveals the developments in robotics, nanotechnology, and biotechnology that may allow us to terraform and build habitable cities on Mars and beyond. He then journeys out of our solar system and discusses how new technologies such as nanoships, laser sails, and fusion rockets may actually make interstellar travel a possibility. We travel beyond our galaxy, and even beyond our universe, as Kaku investigates some of the hottest topics in science today, including warp drive, wormholes, hyperspace, parallel universes, and the multiverse. Ultimately, he shows us how humans may someday achieve a form of immortality and be able to leave our bodies entirely, laser porting to new havens in space.
Presents, at a level suitable for undergraduates and technical college students, the basic physical theory of mechanics and the molecular structure of matter. The material contained in the work should correspond quite closely to courses of lectures given to undergraduate students of physics in Britain and America.
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.
A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.