Affine Algebraic Geometry: Geometry Of Polynomial Rings

Affine Algebraic Geometry: Geometry Of Polynomial Rings

Author: Masayoshi Miyanishi

Publisher: World Scientific

Published: 2023-12-05

Total Pages: 441

ISBN-13: 981128010X

DOWNLOAD EBOOK

Algebraic geometry is more advanced with the completeness condition for projective or complete varieties. Many geometric properties are well described by the finiteness or the vanishing of sheaf cohomologies on such varieties. For non-complete varieties like affine algebraic varieties, sheaf cohomology does not work well and research progress used to be slow, although affine spaces and polynomial rings are fundamental building blocks of algebraic geometry. Progress was rapid since the Abhyankar-Moh-Suzuki Theorem of embedded affine line was proved, and logarithmic geometry was introduced by Iitaka and Kawamata.Readers will find the book covers vast basic material on an extremely rigorous level:


Polynomial Rings and Affine Algebraic Geometry

Polynomial Rings and Affine Algebraic Geometry

Author: Shigeru Kuroda

Publisher: Springer Nature

Published: 2020-03-27

Total Pages: 317

ISBN-13: 3030421368

DOWNLOAD EBOOK

This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry and Stein manifolds.


A First Course in Computational Algebraic Geometry

A First Course in Computational Algebraic Geometry

Author: Wolfram Decker

Publisher: Cambridge University Press

Published: 2013-02-07

Total Pages: 127

ISBN-13: 1107612535

DOWNLOAD EBOOK

A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.


An Invitation to Algebraic Geometry

An Invitation to Algebraic Geometry

Author: Karen E. Smith

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 173

ISBN-13: 1475744978

DOWNLOAD EBOOK

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.


Polynomial Rings and Affine Algebraic Geometry

Polynomial Rings and Affine Algebraic Geometry

Author: Shigeru Kuroda

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9783030421373

DOWNLOAD EBOOK

This proceedings volume gathers together selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry conference which was held at the Tokyo Metropolitan University on February 12-26, 2018, in Tokyo, Japan. In this book, the reader will find some of the latest research conducted by an international group of experts in affine and projective algebraic geometry. Topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. The articles contained in this volume will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as in certain aspects of commutative algebra, Lie theory, symplectic geometry and Stein manifolds.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Affine Space Fibrations

Affine Space Fibrations

Author: Rajendra V. Gurjar

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-07-05

Total Pages: 275

ISBN-13: 3110577429

DOWNLOAD EBOOK

Affine algebraic geometry has progressed remarkably in the last half a century, and its central topics are affine spaces and affine space fibrations. This authoritative book is aimed at graduate students and researchers alike, and studies the geometry and topology of morphisms of algebraic varieties whose general fibers are isomorphic to the affine space while describing structures of algebraic varieties with such affine space fibrations.


Affine Algebraic Geometry

Affine Algebraic Geometry

Author: Kayo Masuda

Publisher: World Scientific Publishing Company Incorporated

Published: 2013

Total Pages: 330

ISBN-13: 9789814436694

DOWNLOAD EBOOK

The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.


Algebraic Theory of Locally Nilpotent Derivations

Algebraic Theory of Locally Nilpotent Derivations

Author: Gene Freudenburg

Publisher: Springer Science & Business Media

Published: 2007-07-18

Total Pages: 266

ISBN-13: 3540295232

DOWNLOAD EBOOK

This book explores the theory and application of locally nilpotent derivations. It provides a unified treatment of the subject, beginning with sixteen First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler’s Theorem for the plane, right up to the most recent results, such as Makar-Limanov’s Theorem for locally nilpotent derivations of polynomial rings. The book also includes a wealth of pexamples and open problems.


The Geometry of Schemes

The Geometry of Schemes

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 265

ISBN-13: 0387226397

DOWNLOAD EBOOK

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.