The International Conference on Energy, Environment and Materials Science (EEMS2015) was held in Guangzhou, China, from August 25 - 26, 2015. EEMS2015 provided a platform for academic scientists, researchers and scholars to exchange and share their experiences and research results within the fields of energy science, energy technology, environmental science, environmental engineering, motivation, automation and electrical engineering, material science and engineering, the discovery or development of energy, and environment and materials science.
Advanced materials for energy and environmental applications (such as rapid heating, anti-fouling/anti-virus surface, chemical sensor, textile/stretchable sensor, fuel cell, and lithium-ion batteries) have been extensively investigated in the academic and industrial fields. The advent of cabon-based nano-materials (carbon nanotubes, graphene, and carbon black) and inonganic nano-materials (Ag wire/particles, Cu mesh, and transition metal dichalcogenide) has accelerated research interest in energy and environmental applications. This book is focused on the emerging concept and improvement of energy and environmental basic research, as well as in the characterization and analysis of novel energy and environmental base materials. The contents of the book are as below: - Theoretical and experimental studies on advanced conducting nanocomposites; - Electrical properties of nanocomposites under various conditions (dynamic mode, aspect ratio, alignment, and contents) and its applications; - Advanced material for energy applications; - Analysis and materials for environmental applications.
An excellent one-volume resource for understanding the most important current issues in the research and advances in materials science for environmental and energy technologies This proceedings volume contains a collection of 20 papers from the 2016 Materials Science and Technology (MS&T'16) meeting held in Salt Lake City, UT, from October 24-27 of that year. These conference symposia provided a forum for scientists, engineers, and technologists to discuss and exchange state-of-the-art ideas, information, and technology on advanced methods and approaches for processing, synthesis, characterization, and applications of ceramics, glasses, and composites. Topics covered include: the 8th International Symposium on Green and Sustainable Technologies for Materials Manufacturing Processing; Materials Issues in Nuclear Waste Management in the 21st Century; Construction and Building Materials for a Better Environment; Materials for Nuclear Applications and Extreme Environments; Nanotechnology for Energy, Healthcare, and Industry; and Materials for Processes for CO2 Capture, Conversion and Sequestration. Logically organized and carefully selected articles give insight into advances in materials science for environmental and energy technologies. Incorporates the latest developments related to advances in materials science for environmental and energy technologies Advances in Materials Science for Environmental and Energy Technologies VI: Ceramic Transactions Volume 262 is ideal for academics in mechanical and chemical engineering, materials and or ceramics, chemistry departments and for those working in government laboratories.
This volume provides expert coverage of the state-of-the-art in sol-gel materials for functional applications in energy, environment and electronics. The use of sol-gel technology has become a hotbed for cutting edge developments in many fields due to the accessibility of advanced materials through low energy processes. The book offers a broad view of this growing research area from basic science through high-level applications with the potential for commercialization and industrial use. Taking an integrated approach, expert chapters present a wide range of topics, from photocatalysts, solar cells and optics, to thin films and materials for energy storage and conversion, demonstrating the combined use of chemistry, physics, materials science and engineering in the search for solutions to some of the most challenging problems of our time.
Progress in membrane materials, selective membrane design, and computer modeling and simulation have contributed greatly to the application of advanced membranes in conventional and alternative power sectors, as well as to clean industry applications. This book presents a comprehensive review of membrane science and technology.
This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.
The 2016 International Conference on Energy, Environment and Materials Science (EEMS 2016) took place on July 29-31, 2016 in Singapore. EEMS 2016 has been a meeting place for innovative academics and industrial experts in the field of energy and environment research. The primary goal of the conference is to promote research and developmental activities in energy and environment research and further to promote scientific information exchange between researchers, developers, engineers, students, and practitioners working all around the world. The conference will be organized every year making it an ideal platform for people to share views and experiences in energy, environment and materials science and related areas.
How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.
Advanced Ceramics possess various unique properties and are able to withstand harsh environments. The aim of this book is to cover various aspects of the advanced ceramics like carbides, nitrides and oxides for energy and environment related applications. Advanced ceramics with additional functionality propose significant potential for greater impact in the field of energy and environmental technologies. This book focuses on the nanostructured ceramics synthesis, properties, structure-property relation and application in the area of energy and environment. It covers the high impact work from around 50 leading researchers throughout the world working in this field. This will help metallurgists, biologists, mechanical engineers, ceramicists, material scientists and researchers working in the nanotechnology field with inclusion of every aspect of advanced ceramics for energy and environmental applications.