Advanced Topics in Mathematical Analysis

Advanced Topics in Mathematical Analysis

Author: Michael Ruzhansky

Publisher: CRC Press

Published: 2019-01-08

Total Pages: 588

ISBN-13: 1351142119

DOWNLOAD EBOOK

Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.


Advanced Real Analysis

Advanced Real Analysis

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

Published: 2008-07-11

Total Pages: 484

ISBN-13: 0817644423

DOWNLOAD EBOOK

* Presents a comprehensive treatment with a global view of the subject * Rich in examples, problems with hints, and solutions, the book makes a welcome addition to the library of every mathematician


Advances in Algebra and Analysis

Advances in Algebra and Analysis

Author: V. Madhu

Publisher: Springer

Published: 2019-01-23

Total Pages: 473

ISBN-13: 3030011208

DOWNLOAD EBOOK

This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.


Advanced Mathematical Analysis

Advanced Mathematical Analysis

Author: R. Beals

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 241

ISBN-13: 146849886X

DOWNLOAD EBOOK

Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass ing different examples.


A Course in Advanced Calculus

A Course in Advanced Calculus

Author: Robert S. Borden

Publisher: Courier Corporation

Published: 2012-09-11

Total Pages: 421

ISBN-13: 0486150380

DOWNLOAD EBOOK

This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, and more. Carefully chosen problems appear at the end of each chapter, and this new edition features an additional appendix of tips and solutions for selected problems.


Basic Real Analysis

Basic Real Analysis

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

Published: 2007-10-04

Total Pages: 671

ISBN-13: 0817644415

DOWNLOAD EBOOK

Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.


A Concise Approach to Mathematical Analysis

A Concise Approach to Mathematical Analysis

Author: Mangatiana A. Robdera

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 370

ISBN-13: 0857293478

DOWNLOAD EBOOK

This text introduces to undergraduates the more abstract concepts of advanced calculus, smoothing the transition from standard calculus to the more rigorous approach of proof writing and a deeper understanding of mathematical analysis. The first part deals with the basic foundation of analysis on the real line; the second part studies more abstract notions in mathematical analysis. Each topic contains a brief introduction and detailed examples.


A Course in Complex Analysis

A Course in Complex Analysis

Author: Wolfgang Fischer

Publisher: Springer Science & Business Media

Published: 2011-10-21

Total Pages: 280

ISBN-13: 3834886610

DOWNLOAD EBOOK

This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.


Advanced Topics in System and Signal Theory

Advanced Topics in System and Signal Theory

Author: Volker Pohl

Publisher: Springer Science & Business Media

Published: 2009-10-03

Total Pages: 245

ISBN-13: 3642036392

DOWNLOAD EBOOK

The requirement of causality in system theory is inevitably accompanied by the appearance of certain mathematical operations, namely the Riesz proj- tion,theHilberttransform,andthespectralfactorizationmapping.Aclassical exampleillustratingthisisthedeterminationoftheso-calledWiener?lter(the linear, minimum means square error estimation ?lter for stationary stochastic sequences [88]). If the ?lter is not required to be causal, the transfer function of the Wiener ?lter is simply given by H(?)=? (?)/? (?),where ? (?) xy xx xx and ? (?) are certain given functions. However, if one requires that the - xy timation ?lter is causal, the transfer function of the optimal ?lter is given by 1 ? (?) xy H(?)= P ,?? (??,?] . + [? ] (?) [? ] (?) xx + xx? Here [? ] and [? ] represent the so called spectral factors of ? ,and xx + xx? xx P is the so called Riesz projection. Thus, compared to the non-causal ?lter, + two additional operations are necessary for the determination of the causal ?lter, namely the spectral factorization mapping ? ? ([? ] ,[? ] ),and xx xx + xx? the Riesz projection P .


Mathematical Analysis I

Mathematical Analysis I

Author: Vladimir A. Zorich

Publisher: Springer Science & Business Media

Published: 2004-01-22

Total Pages: 610

ISBN-13: 9783540403869

DOWNLOAD EBOOK

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.