Advanced DC-DC Power Converters and Switching Converters

Advanced DC-DC Power Converters and Switching Converters

Author: Salvatore Musumeci

Publisher: MDPI

Published: 2021-03-30

Total Pages: 188

ISBN-13: 303650446X

DOWNLOAD EBOOK

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Advanced Multi-Quadrant Operation DC/DC Converters

Advanced Multi-Quadrant Operation DC/DC Converters

Author: Fang Lin Luo

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 216

ISBN-13: 1420037099

DOWNLOAD EBOOK

There are several families of DC/DC converters comprising hundreds of different topologies. Sorting through the various properties and characteristics is obviously a daunting task. Culled from the pages of the groundbreaking Advanced DC/DC Converters, this book provides a focused, concise overview of more than 50 topologies of multi-quadrant converters. All aspects of these topologies are illustrated through designs developed by the authors through the years. The book begins with multiple-quadrant converters followed by switched component (SC and SI) converters, multiple-lift push-pull switched-capacitor converters, and finally, multiple-quadrant soft-switching converters.


Essential DC/DC Converters

Essential DC/DC Converters

Author: Fang Lin Luo

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 436

ISBN-13: 1420037102

DOWNLOAD EBOOK

There are several families of DC/DC converters comprising hundreds of different topologies. Sorting through the various properties and characteristics is obviously a daunting task. Culled from the pages of the groundbreaking Advanced DC/DC Converters, this book provides a focused, concise overview of more than 80 topologies, developed by the authors, of essential DC/DC converters. The authors begin with an introduction to the basics of DC/DC conversion technology, then present an in-depth analysis of voltage-lift and super-lift converters. This book also includes a brand new chapter on the revolutionary ultra-lift Luo-converter. Several experimental and simulation results clearly illustrate the concepts.


Advanced Multiphasing Switched-Capacitor DC-DC Converters

Advanced Multiphasing Switched-Capacitor DC-DC Converters

Author: Nicolas Butzen

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 160

ISBN-13: 3030387356

DOWNLOAD EBOOK

This book gives a detailed analysis of switched-capacitor DC-DC converters that are entirely integrated on a single chip and establishes that these converters are mainly limited by the large parasitic coupling, the low capacitor energy density, and the fact that switched-capacitor converter topologies only have a fixed voltage conversion ratio. The authors introduce the concept of Advanced Multiphasing as a way to circumvent these limitations by having multiple out-of-phase parallel converter cores interact with each other to minimize capacitor charging losses, leading to several techniques that demonstrate record efficiency and power-density, and even a fundamentally new type of switched-capacitor topology that has a continuously-scalable conversion ratio. Provides single-source reference to the recently-developed Advanced Multiphasing concept; Enables greatly improved performance and capabilities in fully integrated switched-capacitor converters; Enables readers to design DC-DC converters, where multiple converter cores are put in parallel and actively interact with each other over several phases to improve their capabilities.


DC—DC Converters for Future Renewable Energy Systems

DC—DC Converters for Future Renewable Energy Systems

Author: Neeraj Priyadarshi

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 480

ISBN-13: 9811643881

DOWNLOAD EBOOK

The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.


Advanced DC/AC Inverters

Advanced DC/AC Inverters

Author: Fang Lin Luo

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 322

ISBN-13: 1466511389

DOWNLOAD EBOOK

DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.


Advanced DC/DC Converters

Advanced DC/DC Converters

Author: Fang Lin Luo

Publisher: CRC Press

Published: 2016-12-08

Total Pages: 775

ISBN-13: 1315393778

DOWNLOAD EBOOK

DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of authors Fang Lin Luo and Hong Ye, DC/DC converters have now been sorted into their six generations, and by a rough count, over 800 different topologies currently exist, with more being developed each year. Advanced DC/DC Converters, Second Edition offers a concise, practical presentation of DC/DC converters, summarizes the spectrum of conversion technologies, and presents new ideas and more than 200 new topologies. Beginning with background material on DC/DC conversion, the book later discusses both voltage lift and super-lift converters. It then proceeds through each generation, including the groundbreaking sixth generation—converters developed by the authors that can be cascaded for high voltage transfer gain. This new edition updates every chapter and offers three new chapters. The introduction of the super-lift technique is an outstanding achievement in DC/DC conversion technology, and the ultra-lift technique and hybrid split-capacitor/inductor applied in Super-Lift Luo-Converters are introduced in Chapters 7 and 8. In Chapter 9, the authors have theoretically defined a new concept, Energy Factor (EF), researched the relations between EF and the mathematical modelling for power DC/DC converters, and demonstrated the modeling method for two converters. More than 320 figures, 60 tables, and 500 formulae allow the reader to more easily grasp the overall structure of advanced DC/DC converters, provide fast access to precise data, and help them to quickly determine the values of their own circuit components.


Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

Author: Mike Wens

Publisher: Springer Science & Business Media

Published: 2011-05-10

Total Pages: 316

ISBN-13: 940071436X

DOWNLOAD EBOOK

CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.


High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

Author: Deshang Sha

Publisher: Springer

Published: 2018-05-17

Total Pages: 326

ISBN-13: 9811302596

DOWNLOAD EBOOK

Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.


Dynamics and Control of DC-DC Converters

Dynamics and Control of DC-DC Converters

Author: Farzin Asadi

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 229

ISBN-13: 3031025024

DOWNLOAD EBOOK

DC-DC converters have many applications in the modern world. They provide the required power to the communication backbones, they are used in digital devices like laptops and cell phones, and they have widespread applications in electric cars, to just name a few. DC-DC converters require negative feedback to provide a suitable output voltage or current for the load. Obtaining a stable output voltage or current in presence of disturbances such as: input voltage changes and/or output load changes seems impossible without some form of control. This book tries to train the art of controller design for DC-DC converters. Chapter 1 introduces the DC-DC converters briefly. It is assumed that the reader has the basic knowledge of DC-DC converter (i.e., a basic course in power electronics). The reader learns the disadvantages of open loop control in Chapter 2. Simulation of DC-DC converters with the aid of Simulink® is discussed in this chapter as well. Extracting the dynamic models of DC-DC converters is studied in Chapter 3. We show how MATLAB® and a software named KUCA can be used to do the cumbersome and error-prone process of modeling automatically. Obtaining the transfer functions using PSIM® is studied as well. These days, softwares are an integral part of engineering sciences. Control engineering is not an exception by any means. Keeping this in mind, we design the controllers using MATLAB® in Chapter 4. Finally, references are provided at the end of each chapter to suggest more information for an interested reader. The intended audiencies for this book are practice engineers and academians.