Adaptive Finite Element Solution Algorithm for the Euler Equations

Adaptive Finite Element Solution Algorithm for the Euler Equations

Author: Richard A. Shapiro

Publisher: Vieweg+Teubner Verlag

Published: 2013-03-08

Total Pages: 180

ISBN-13: 3322878791

DOWNLOAD EBOOK

This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed.


Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method

Author: Anders Logg

Publisher: Springer Science & Business Media

Published: 2012-02-24

Total Pages: 723

ISBN-13: 3642230997

DOWNLOAD EBOOK

This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.


Least-Squares Finite Element Methods

Least-Squares Finite Element Methods

Author: Pavel B. Bochev

Publisher: Springer Science & Business Media

Published: 2009-04-28

Total Pages: 669

ISBN-13: 0387689222

DOWNLOAD EBOOK

Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.


The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications

Author: Mats G. Larson

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 403

ISBN-13: 3642332870

DOWNLOAD EBOOK

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​


The Finite Element Method and Its Reliability

The Finite Element Method and Its Reliability

Author: Ivo Babuška

Publisher: Oxford University Press

Published: 2001

Total Pages: 820

ISBN-13: 9780198502760

DOWNLOAD EBOOK

The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.


Finite Element Computational Fluid Mechanics

Finite Element Computational Fluid Mechanics

Author: A. J. Baker

Publisher: Taylor & Francis US

Published: 1983-01-01

Total Pages: 534

ISBN-13: 9781560322450

DOWNLOAD EBOOK

Aimed at advanced level undergraduates, engineers and scientists, this text derives, develops and applies finite-element solution methodology directly to the differential equation systems governing distinct and practical problem classes in fluid


Higher-Order Finite Element Methods

Higher-Order Finite Element Methods

Author: Pavel Solin

Publisher: CRC Press

Published: 2003-07-28

Total Pages: 404

ISBN-13: 0203488040

DOWNLOAD EBOOK

The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and


Frontiers in Numerical Analysis - Durham 2010

Frontiers in Numerical Analysis - Durham 2010

Author: James Blowey

Publisher: Springer Science & Business Media

Published: 2012-01-10

Total Pages: 298

ISBN-13: 3642239145

DOWNLOAD EBOOK

This book contains detailed lecture notes on four topics at the forefront of current research in computational mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to gain quickly an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians who require a succint and accurate account of recent research in areas parallel to their own, and graduates in mathematical sciences.