Understanding star formation is one of the key fields in present-day astrophysics. This book treats a wide variety of the physical processes involved, as well as the main observational discoveries, with key points being discussed in detail. The current star formation in our galaxy is emphasized, because the most detailed observations are available for this case. The book presents a comparison of the various scenarios for star formation, discusses the basic physics underlying each one, and follows in detail the history of a star from its initial state in the interstellar gas to its becoming a condensed object in equilibrium. Both theoretical and observational evidence to support the validity of the general evolutionary path are presented, and methods for comparing the two are emphasized. The author is a recognized expert in calculations of the evolution of protostars, the structure and evolution of disks, and stellar evolution in general. This book will be of value to graduate students in astronomy and astrophysics as well as to active researchers in the field.
Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this advanced textbook provides students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with and understand the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.
Concise and self-contained, this textbook gives a graduate-level introduction to the physical processes that shape planetary systems, covering all stages of planet formation. Writing for readers with undergraduate backgrounds in physics, astronomy, and planetary science, Armitage begins with a description of the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, rocky, and giant planets, and concludes by describing the gravitational and gas dynamical evolution of planetary systems. He provides a self-contained account of the modern theory of planet formation and, for more advanced readers, carefully selected references to the research literature, noting areas where research is ongoing. The second edition has been thoroughly revised to include observational results from NASA's Kepler mission, ALMA observations and the JUNO mission to Jupiter, new theoretical ideas including pebble accretion, and an up-to-date understanding in areas such as disk evolution and planet migration.
The formation of the first stars (Pop III stars) and galaxies is one of the great outstanding challenges in modern astrophysics and cosmology. The first stars are likely key drivers for early cosmic evolution and will be at the center of attention over the next decade. The best available space and ground-based telescopes like the Hubble Space Telescope probe the Universe to high redshifts and provide us with tantalizing hints; but they cannot yet directly detect the first generation of stars and the formation of the first galaxies. This is left as key science for future telecopes like the James Webb Space Telescope. This book is based in part on classroom tested lectures related to Pop III stars, but also draws from the author's review articles of the main physical principles involved. The book will thus combine pedagogical introductory chapters with more advanced ones to survey the cutting-edge advances from the frontier of research. It covers the theory of first star formation, the relation between first stars and dark matter, their impact on cosmology, their observational signatures, the transition to normal star formation as well as the assembly of the first galaxies. It will prepare students for interpreting observational findings and their cosmological implications.
The formation of the first supermassive black holes is one of the main open questions in our understanding of high-redshift structure formation. In this book, we aim to provide a summary of state-of-the-art modern research on this topic, exploring the formation of massive black holes from a fluid-dynamical, stellar-dynamical and chemical perspective. The book thus presents a solid theoretical foundation, a comparison with current observations and future observational perspectives with upcoming missions such as the Square Kilometre Array, the European Extremely Large Telescope, the Euclid satellite as well as possible detections via gravitational waves.
This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text for physics and astronomy graduate students, and as a reference for professional scientists.
The Trans-Neptunian Solar System is a timely reference highlighting the state-of-the-art in current knowledge on the outer solar system. It not only explores the individual objects being discovered there, but also their relationships with other Solar System objects and their roles in the formation and evolution of the Solar System and other planets. Integrating important findings from recent missions, such as New Horizons and Rosetta, the book covers the physical properties of the bodies in the Trans-Neptunian Region, including Pluto and other large members of the Kuiper Belt, as well as dynamical indicators for Planet 9 and related objects and future prospects. Offering a complete look at exploration and findings in the Kuiper Belt and the rest of the outer solar system beyond Neptune, this book is an important resource to bring planetary scientists, space scientists and astrophysicists up-to-date on the latest research and current understandings. - Provides the most up-to-date information on the exploration of the Trans-Neptunian Solar System and what it means for the future of outer solar system research - Contains clear sections that provide comprehensive coverage on the most important facets of the outer Solar System - Includes four-color images and data from important missions, including New Horizons and Rosetta - Concludes with suggestions and insights on the future of research on Trans-Neptunian objects
Theideatocelebrate50yearsoftheSalpeterIMFoccurredduringtherecent IAU General Assembly in Sydney, Australia. Indeed, it was from Australia that in July 1954 Ed Salpeter submitted his famous paper "The Luminosity Function and Stellar Evolution" with the rst derivation of the empirical stellar IMF. This contribution was to become one of the most famous astrophysics papers of the last 50 years. Here, Ed Salpeter introduced the terms "original mass function" and "original luminosity function", and estimated the pro- bility for the creation of stars of given mass at a particular time, now known as the "Salpeter Initial Mass Function", or IMF. The paper was written at the Australian National University in Canberra on leave of absence from Cornell University (USA) and was published in 1955 as 7 page note in the Astroph- ical Journal Vol. 121, page 161. To celabrate the 50th anniversary of the IMF, along with Ed Salpeter’s 80th birthday, we have organized a special meeting that brought together scientists involved in the empirical determination of this fundamental quantity in a va- ety of astrophysical contexts and other scientists fascinated by the deep imp- cations of the IMF on star formation theories, on the physical conditions of the gas before and after star formation, and on galactic evolution and cosmology. The meeting took place in one of the most beautiful spots of the Tuscan countryside, far from the noise and haste of everyday life.