A Singular Introduction to Commutative Algebra

A Singular Introduction to Commutative Algebra

Author: Gert-Martin Greuel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 601

ISBN-13: 3662049635

DOWNLOAD EBOOK

This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.


A Singular Introduction to Commutative Algebra

A Singular Introduction to Commutative Algebra

Author: Gert-Martin Greuel

Publisher: Springer Science & Business Media

Published: 2007-09-23

Total Pages: 703

ISBN-13: 3540735429

DOWNLOAD EBOOK

This substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book’s most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.


Introduction to Commutative Algebra and Algebraic Geometry

Introduction to Commutative Algebra and Algebraic Geometry

Author: Ernst Kunz

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 253

ISBN-13: 1461459877

DOWNLOAD EBOOK

Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.


Computational Commutative Algebra 1

Computational Commutative Algebra 1

Author: Martin Kreuzer

Publisher: Springer Science & Business Media

Published: 2008-07-15

Total Pages: 325

ISBN-13: 354067733X

DOWNLOAD EBOOK

This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.


Local Algebra

Local Algebra

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 139

ISBN-13: 3662042037

DOWNLOAD EBOOK

This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.


Commutative Algebra

Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 784

ISBN-13: 1461253500

DOWNLOAD EBOOK

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.


Undergraduate Commutative Algebra

Undergraduate Commutative Algebra

Author: Miles Reid

Publisher: Cambridge University Press

Published: 1995-11-30

Total Pages: 172

ISBN-13: 9780521458894

DOWNLOAD EBOOK

Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.


Commutative Algebra

Commutative Algebra

Author: J. William Hoffman

Publisher: Mercury Learning and Information

Published: 2016-04-15

Total Pages: 220

ISBN-13: 1944534709

DOWNLOAD EBOOK

The purpose of this book is twofold: to present some basic ideas in commutative algebra and algebraic geometry and to introduce topics of current research, centered around the themes of Gröbner bases, resultants and syzygies. The presentation of the material combines definitions and proofs with an emphasis on concrete examples. The authors illustrate the use of software such as Mathematica and Singular. The design of the text in each chapter consists of two parts: the fundamentals and the applications, which make it suitable for courses of various lengths, levels, and topics based on the mathematical background of the students. The fundamentals portion of the chapter is intended to be read with minimal outside assistance, and to learn some of the most useful tools in commutative algebra. The applications of the chapter are to provide a glimpse of the advanced mathematical research where the topics and results are related to the material presented earlier. In the applications portion, the authors present a number of results from a wide range of sources without detailed proofs. The applications portion of the chapter is suitable for a reader who knows a little commutative algebra and algebraic geometry already, and serves as a guide to some interesting research topics. This book should be thought of as an introduction to more advanced texts and research topics. Its novelty is that the material presented is a unique combination of the essential methods and the current research results. The goal is to equip readers with the fundamental classical algebra and geometry tools, ignite their research interests, and initiate some potential research projects in the related areas.


Computing in Algebraic Geometry

Computing in Algebraic Geometry

Author: Wolfram Decker

Publisher: Springer Science & Business Media

Published: 2006-03-02

Total Pages: 331

ISBN-13: 3540289925

DOWNLOAD EBOOK

This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.


Computations in Algebraic Geometry with Macaulay 2

Computations in Algebraic Geometry with Macaulay 2

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2001-09-25

Total Pages: 354

ISBN-13: 9783540422303

DOWNLOAD EBOOK

This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.