This book provides glycoscientists with a handbook of useful databases that can be applied to glycoscience research. Although many databases are now publicly available, one of the hurdles for their users is the learning curve required to effectively utilize those databases. Therefore, this book not only describes the existing databases, but also provides tips on how to obtain the target data. That is, because many databases provide a variety of data that could be obtained from different perspectives, each chapter provides users with potential biological questions that can be answered by a particular database and step-by-step instructions, with figures, on how to obtain that data. Troubleshooting tips are also provided to aid users encountering problems that can be predicted when using these databases. Moreover, contact information for each database is provided in case unexpected issues arise.
The growing importance of glycobiology and carbohydrate chemistry in modern biotechnology and the pharmaceutical industry makes accurate carbohydrate analysis indispensable. This book provides the principles and protocols of various fundamental carbohydrate analysis methods. Choice of method is entirely dependent upon the type of material being investigated (biological samples, food products, etc.), and the level of structural detail required, i.e. sugar content, compositional analysis, linkages between the sugar components, or the total chemical structure of a given molecule. Full structural characterization of carbohydrate chains requires significant time, resources, and skill in several methods of analysis; no single technique can address all glycan analysis needs. This book summarizes several existing analytical techniques (both chemical and physical) in an introductory volume designed for the non-expert researcher or novice scientist. While background in carbohydrate chemistry is assumed, all information necessary to understanding the described techniques is addressed in the text.
This volume describes computational approaches to predict multitudes of PTM sites. Chapters describe in depth approaches on algorithms, state-of-the-art Deep Learning based approaches, hand-crafted features, physico-chemical based features, issues related to obtaining negative training, sequence-based features, and structure-based features. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Authoritative and cutting-edge, Computational Methods for Predicting Post-Translational Modification Sites aims to be a useful guide for researchers who are interested in the field of PTM site prediction.
Aerobic organisms have evolved to utilise the intrinsic oxidising power of oxygen from the atmosphere. This so-called 'activation' of oxygen is often catalysed by a heme-containing enzyme. This book highlights the many and varied catalytic activities of O2-dependent heme–iron enzymes, including monoxygenases and cytochrome P450, dioxygenases, oxidases and model heme systems. Dioxygen-dependent Heme Enzymes will be a useful resource for postgraduate students and researchers in biochemistry and metallobiology working in, or moving into, research areas involving heme proteins.
Carbohydrate-active enzymes are responsible for both biosynthesis and the breakdown of carbohydrates and glycoconjugates. They are involved in many metabolic pathways; in the biosynthesis and degradation of various biomolecules, such as bacterial exopolysaccharides, starch, cellulose and lignin; and in the glycosylation of proteins and lipids. Carbohydrate-active enzymes are classified into glycoside hydrolases, glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and enzymes with auxiliary activities (CAZy database, www.cazy.org). Glycosyltransferases synthesize a huge variety of complex carbohydrates with different degrees of polymerization, moieties and branching. On the other hand, complex carbohydrate breakdown is carried out by glycoside hydrolases, polysaccharide lyases and carbohydrate esterases. Their interesting reactions have attracted the attention of researchers across scientific fields, ranging from basic research to biotechnology. Interest in carbohydrate-active enzymes is due not only to their ability to build and degrade biopolymers—which is highly relevant in biotechnology—but also because they are involved in bacterial biofilm formation, and in glycosylation of proteins and lipids, with important health implications. This book gathers new research results and reviews to broaden our understanding of carbohydrate-active enzymes, their mutants and their reaction products at the molecular level.
Glycoproteins are central to numerous cellular processes and are among the most structurally complex biomolecules in nature. This unique complexity stems from variability in complex oligosaccharides that are located throughout the protein, a feature that is profoundly important for regulating biomolecular interactions but also makes glycoproteins difficult to study. As such, glycoprotein analysis entails a range of techniques to bridge the knowledge gap between glycoprotein structure and biological function. This book serves as an authoritative guide to glycoprotein analysis, written by internationally recognised experts in the field and discussed in the context of real-world applications across the life sciences. It provides a wide-ranging assessment of the modern methods, from those used to characterise glycoprotein structure, to approaches proficient in uncovering the molecular mechanisms by which they function as well as those capable of measuring structural dynamics and macromolecular assembly. These methods differ to a large extent and include mass spectrometry, glycan/lectin arrays, nuclear magnetic resonance, infrared spectroscopy, scanning probe microscopy and high-performance liquid chromatography. Equally important are computational techniques, including molecular dynamics and bioinformatics, which are also covered and discussed in the wider context of glycoprotein analysis. Glycobiology is indeed a rapidly growing field and the development of advanced tools for glycoproteins analysis has been enabled by researchers from different backgrounds working to overcome long-standing analytical challenges and biological questions involving glycosylation. This book is intended to aid academic and professional researchers at various levels of their career to gain a deeper appreciation of cutting-edge methods in glycoprotein analysis and their applications in biomolecular research, biotherapeutic development, structural biology and biophysical chemistry.
Enzymes in Food Biotechnology: Production, Applications, and Future Prospects presents a comprehensive review of enzyme research and the potential impact of enzymes on the food sector. This valuable reference brings together novel sources and technologies regarding enzymes in food production, food processing, food preservation, food engineering and food biotechnology that are useful for researchers, professionals and students. Discussions include the process of immobilization, thermal and operational stability, increased product specificity and specific activity, enzyme engineering, implementation of high-throughput techniques, screening to relatively unexplored environments, and the development of more efficient enzymes. - Explores recent scientific research to innovate novel, global ideas for new foods and enzyme engineering - Provides fundamental and advanced information on enzyme research for use in food biotechnology, including microbial, plant and animal enzymes - Includes recent cutting-edge research on the pharmaceutical uses of enzymes in the food industry
This book gathers selected studies on the industrial applications of glycoside hydrolases (GHs), presenting an updated classification of these enzymes, and discussing their structure, mechanisms, and various approaches to improve their catalytic efficiency. Further, it explains the various industrial applications of glycoside hydrolases in food, effluent treatment, biofuel production, and the paper and pulp industries. Lastly, the book provides a comparative analysis of glycoside hydrolases and discusses the role of metagenomics in the discovery of industrially important enzymes. As such it is a thought-provoking, instructive and informative resource for biochemists, enzymologists, molecular biologists and bioprocess technologists.
Transcriptome Profiling: Progress and Prospects assists readers in assessing and interpreting a large number of genes, up to and including an entire genome. It provides key insights into the latest tools and techniques used in transcriptomics and its relevant topics which can reveal a global snapshot of the complete RNA component of a cell at a given time. This snapshot, in turn, enables the distinction between different cell types, different disease states, and different time points during development. Transcriptome analysis has been a key area of biological inquiry for decades. The next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution. Transcriptome analysis has evolved from the detection of single RNA molecules to large-scale gene expression profiling and genome annotation initiatives. Written by a team of global experts, key topics in Transcriptome Profiling include transcriptome characterization, expression analysis of transcripts, transcriptome and gene regulation, transcriptome profiling and human health, medicinal plants transcriptomics, transcriptomics and genetic engineering, transcriptomics in agriculture, and phylotranscriptomics. - Presents recent development in the tools and techniques in transcriptomic characterization - Integrates expression analysis of transcripts and gene regulation - Includes the application of transcriptomics in human health, genetic engineering and agriculture
The purpose of this book is to provide an overview of AI research, ranging from basic work to interfaces and applications, with as much emphasis on results as on current issues. It is aimed at an audience of master students and Ph.D. students, and can be of interest as well for researchers and engineers who want to know more about AI. The book is split into three volumes: - the first volume brings together twenty-three chapters dealing with the foundations of knowledge representation and the formalization of reasoning and learning (Volume 1. Knowledge representation, reasoning and learning) - the second volume offers a view of AI, in fourteen chapters, from the side of the algorithms (Volume 2. AI Algorithms) - the third volume, composed of sixteen chapters, describes the main interfaces and applications of AI (Volume 3. Interfaces and applications of AI). This third volume is dedicated to the interfaces of AI with various fields, with which strong links exist either at the methodological or at the applicative levels. The foreword of this volume reminds us that AI was born for a large part from cybernetics. Chapters are devoted to disciplines that are historically sisters of AI: natural language processing, pattern recognition and computer vision, and robotics. Also close and complementary to AI due to their direct links with information are databases, the semantic web, information retrieval and human-computer interaction. All these disciplines are privileged places for applications of AI methods. This is also the case for bioinformatics, biological modeling and computational neurosciences. The developments of AI have also led to a dialogue with theoretical computer science in particular regarding computability and complexity. Besides, AI research and findings have renewed philosophical and epistemological questions, while their cognitive validity raises questions to psychology. The volume also discusses some of the interactions between science and artistic creation in literature and in music. Lastly, an epilogue concludes the three volumes of this Guided Tour of AI Research by providing an overview of what has been achieved by AI, emphasizing AI as a science, and not just as an innovative technology, and trying to dispel some misunderstandings.