A New Type of Single Valued Neutrosophic Covering Rough Set Model

A New Type of Single Valued Neutrosophic Covering Rough Set Model

Author: Jingqian Wang

Publisher: Infinite Study

Published:

Total Pages: 23

ISBN-13:

DOWNLOAD EBOOK

Recently, various types of single valued neutrosophic (SVN) rough set models were presented based on the same inclusion relation. However, there is another SVN inclusion relation in SVN sets. In this paper, we propose a new type of SVN covering rough set model based on the new inclusion relation.


New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications

New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications

Author: Florentin Smarandache

Publisher: MDPI

Published: 2019-11-27

Total Pages: 714

ISBN-13: 3039219383

DOWNLOAD EBOOK

This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.


Neutrosophic Sets and Systems, vol. 17/2017

Neutrosophic Sets and Systems, vol. 17/2017

Author: Yingcang Ma

Publisher: Infinite Study

Published:

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.


Interval neutrosophic covering rough sets based on neighborhoods

Interval neutrosophic covering rough sets based on neighborhoods

Author: Dongsheng Xu

Publisher: Infinite Study

Published:

Total Pages: 16

ISBN-13:

DOWNLOAD EBOOK

Covering rough set is a classical generalization of rough set. As covering rough set is a mathematical tool to deal with incomplete and incomplete data, it has been widely used in various fields. The aim of this paper is to extend the covering rough sets to interval neutrosophic sets, which can make multi-attribute decision making problem more tractable. Interval neutrosophic covering rough sets can be viewed as the bridge connecting Interval neutrosophic sets and covering rough sets. Firstly, the paper introduces the definition of interval neutrosophic sets and covering rough sets, where the covering rough set is defined by neighborhood. Secondly, Some basic properties and operation rules of interval neutrosophic sets and covering rough sets are discussed. Thirdly, the definition of interval neutrosophic covering rough sets are proposed. Then, some theorems are put forward and their proofs of interval neutrosophic covering rough sets also be gived. Lastly, this paper gives a numerical example to apply the interval neutrosophic covering rough sets.


Fuzzy Techniques for Decision Making 2018

Fuzzy Techniques for Decision Making 2018

Author: José Carlos R. Alcantud

Publisher: MDPI

Published: 2020-12-02

Total Pages: 776

ISBN-13: 3039364154

DOWNLOAD EBOOK

Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches.


A Method of Determining Multi-AttributeWeights Based on Single-Valued Neutrosophic Numbers and Its Application in TODIM

A Method of Determining Multi-AttributeWeights Based on Single-Valued Neutrosophic Numbers and Its Application in TODIM

Author: Dongsheng Xu

Publisher: Infinite Study

Published:

Total Pages: 12

ISBN-13:

DOWNLOAD EBOOK

In this paper, the TODIM method is used to solve the multi-attribute decision-making problem with unknown attribute weight in venture capital, and the decision information is given in the form of single-valued neutrosophic numbers. In order to consider the objectivity and subjectivity of decision-making problems reasonably, the optimal weight is obtained by combining subjective weights and objective weights.


Neutrosophic Triangular Norms and Their Derived Residuated Lattices

Neutrosophic Triangular Norms and Their Derived Residuated Lattices

Author: Qingqing Hu

Publisher: Infinite Study

Published:

Total Pages: 22

ISBN-13:

DOWNLOAD EBOOK

Neutrosophic triangular norms (t-norms) and their residuated lattices are not only the main research object of neutrosophic set theory, but also the core content of neutrosophic logic. Neutrosophic implications are important operators of neutrosophic logic. Neutrosophic residual implications based on neutrosophic t-norms can be applied to the fields of neutrosophic inference and neutrosophic control. In this paper, neutrosophic t-norms, neutrosophic residual implications, and the residuated lattices derived from neutrosophic t-norms are investigated deeply. First of all, the lattice and its corresponding system are proved to be a complete lattice and a De Morgan algebra, respectively. Second, the notions of neutrosophic t-norms are introduced on the complete lattice discussed earlier. The basic concepts and typical examples of representable and non-representable neutrosophic t-norms are obtained. Naturally, De Morgan neutrosophic triples are defined for the duality of neutrosophic t-norms and neutrosophic t-conorms with respect to neutrosophic negators. Third, neutrosophic residual implications generated from neutrosophic t-norms and their basic properties are investigated. Furthermore, residual neutrosophic t-norms are proved to be infinitely -distributive, and then some important properties possessed by neutrosophic residual implications are given. Finally, a method for producing neutrosophic t-norms from neutrosophic implications is presented, and the residuated lattices are constructed on the basis of neutrosophic t-norms and neutrosophic residual implications.