Kinetic Formulation of Conservation Laws

Kinetic Formulation of Conservation Laws

Author: B. Perthame

Publisher: Oxford University Press

Published: 2002-12-05

Total Pages: 212

ISBN-13: 9780198509134

DOWNLOAD EBOOK

Written by a well-known expert in the field, the focus of this book is on an innovative mathematical and numerical theory which applies to classical models of physics such as shock waves and balance laws. The text is based on early works in common with P.L. Lions (field medalist).


Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems

Author: Emmanuel Franck

Publisher: Springer Nature

Published: 2023-10-12

Total Pages: 296

ISBN-13: 3031408608

DOWNLOAD EBOOK

This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.


Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics

Author: Constantine M. Dafermos

Publisher: Springer Science & Business Media

Published: 2009-12-12

Total Pages: 710

ISBN-13: 3642040489

DOWNLOAD EBOOK

The 3rd edition is thoroughly revised, applications are substantially enriched, it includes a new account of the early history of the subject (from 1800 to 1957) and a new chapter recounting the recent solution of open problems of long standing in classical aerodynamics. The bibliography comprises now over fifteen hundred titles. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH


Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems

Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems

Author: Emmanuel Franck

Publisher: Springer Nature

Published: 2023-11-01

Total Pages: 381

ISBN-13: 3031408640

DOWNLOAD EBOOK

This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. This volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. The second volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.


Nonlinear Conservation Laws and Applications

Nonlinear Conservation Laws and Applications

Author: Alberto Bressan

Publisher: Springer Science & Business Media

Published: 2011-04-19

Total Pages: 487

ISBN-13: 1441995544

DOWNLOAD EBOOK

This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.


Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications

Author: Heinrich Freistühler

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 471

ISBN-13: 3034883722

DOWNLOAD EBOOK

Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods.


Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

Publisher: Elsevier

Published: 2008-10-06

Total Pages: 609

ISBN-13: 0080931979

DOWNLOAD EBOOK

The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE’s, written by leading experts. - Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts