A History of Inverse Probability

A History of Inverse Probability

Author: Andrew I. Dale

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 1468404156

DOWNLOAD EBOOK

It is thought as necessary to write a Preface before a Book, as it is judged civil, when you invite a Friend to Dinner, to proffer him a Glass of Hock beforehand for a Whet. John Arbuthnot, from the preface to his translation of Huygens's "De Ratiociniis in Ludo Alooe". Prompted by an awareness of the importance of Bayesian ideas in modern statistical theory and practice, I decided some years ago to undertake a study of the development and growth of such ideas. At the time it seemed appropriate to begin such an investigation with an examination of Bayes's Essay towards solving a problem in the doctrine of chances and Laplace's Theorie analytique des probabilites, and then to pass swiftly on to a brief consideration of other nineteenth century works before turning to what would be the main topic of the treatise, videlicet the rise of Bayesian statis tics from the 1950's to the present day. It soon became apparent, however, that the amount of Bayesian work published was such that a thorough investigation of the topic up to the 1980's would require several volumes - and also run the risk of incurring the wrath of extant authors whose writings would no doubt be misrepre sented, or at least be so described. It seemed wise, therefore, to restrict the period and the subject under study in some way, and I decided to con centrate my attention on inverse probability from Thomas Bayes to Karl Pearson.


A History of Inverse Probability

A History of Inverse Probability

Author: Andrew I. Dale

Publisher: Springer Science & Business Media

Published: 1999-06-04

Total Pages: 714

ISBN-13: 9780387988078

DOWNLOAD EBOOK

This is a history of the use of Bayes theoremfrom its discovery by Thomas Bayes to the rise of the statistical competitors in the first part of the twentieth century. The book focuses particularly on the development of one of the fundamental aspects of Bayesian statistics, and in this new edition readers will find new sections on contributors to the theory. In addition, this edition includes amplified discussion of relevant work.


Fisher, Neyman, and the Creation of Classical Statistics

Fisher, Neyman, and the Creation of Classical Statistics

Author: Erich L. Lehmann

Publisher: Springer Science & Business Media

Published: 2011-07-25

Total Pages: 123

ISBN-13: 1441995005

DOWNLOAD EBOOK

Classical statistical theory—hypothesis testing, estimation, and the design of experiments and sample surveys—is mainly the creation of two men: Ronald A. Fisher (1890-1962) and Jerzy Neyman (1894-1981). Their contributions sometimes complemented each other, sometimes occurred in parallel, and, particularly at later stages, often were in strong opposition. The two men would not be pleased to see their names linked in this way, since throughout most of their working lives they detested each other. Nevertheless, they worked on the same problems, and through their combined efforts created a new discipline. This new book by E.L. Lehmann, himself a student of Neyman’s, explores the relationship between Neyman and Fisher, as well as their interactions with other influential statisticians, and the statistical history they helped create together. Lehmann uses direct correspondence and original papers to recreate an historical account of the creation of the Neyman-Pearson Theory as well as Fisher’s dissent, and other important statistical theories.


A History of Mathematical Statistics from 1750 to 1930

A History of Mathematical Statistics from 1750 to 1930

Author: Anders Hald

Publisher: Wiley-Interscience

Published: 1998-04-22

Total Pages: 832

ISBN-13:

DOWNLOAD EBOOK

The long-awaited second volume of Anders Hald's history of the development of mathematical statistics. Anders Hald's A History of Probability and Statistics and Their Applications before 1750 is already considered a classic by many mathematicians and historians. This new volume picks up where its predecessor left off, describing the contemporaneous development and interaction of four topics: direct probability theory and sampling distributions; inverse probability by Bayes and Laplace; the method of least squares and the central limit theorem; and selected topics in estimation theory after 1830. In this rich and detailed work, Hald carefully traces the history of parametric statistical inference, the development of the corresponding mathematical methods, and some typical applications. Not surprisingly, the ideas, concepts, methods, and results of Laplace, Gauss, and Fisher dominate his account. In particular, Hald analyzes the work and interactions of Laplace and Gauss and describes their contributions to modern theory. Hald also offers a great deal of new material on the history of the period and enhances our understanding of both the controversies and continuities that developed between the different schools. To enable readers to compare the contributions of various historical figures, Professor Hald has rewritten the original papers in a uniform modern terminology and notation, while leaving the ideas unchanged. Statisticians, probabilists, actuaries, mathematicians, historians of science, and advanced students will find absorbing reading in the author's insightful description of important problems and how they gradually moved toward solution.


A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

Author: Anders Hald

Publisher: Springer Science & Business Media

Published: 2008-08-24

Total Pages: 221

ISBN-13: 0387464093

DOWNLOAD EBOOK

This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.


Breakthroughs in Statistics

Breakthroughs in Statistics

Author: Samuel Kotz

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 576

ISBN-13: 1461206677

DOWNLOAD EBOOK

Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.


Probability: A Very Short Introduction

Probability: A Very Short Introduction

Author: John Haigh

Publisher: Oxford University Press

Published: 2012-04-26

Total Pages: 145

ISBN-13: 0199588481

DOWNLOAD EBOOK

Making good decisions under conditions of uncertainty requires an appreciation of the way random chance works. In this Very Short Introduction, John Haigh provides a brief account of probability theory; explaining the philosophical approaches, discussing probability distributions, and looking its applications in science and economics.


A History of Probability and Statistics and Their Applications before 1750

A History of Probability and Statistics and Their Applications before 1750

Author: Anders Hald

Publisher: John Wiley & Sons

Published: 2005-02-25

Total Pages: 611

ISBN-13: 047172517X

DOWNLOAD EBOOK

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource." –Short Book Reviews of ISI


Introduction to Probability

Introduction to Probability

Author: David F. Anderson

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 447

ISBN-13: 110824498X

DOWNLOAD EBOOK

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.


The Theory That Would Not Die

The Theory That Would Not Die

Author: Sharon Bertsch McGrayne

Publisher: Yale University Press

Published: 2011-05-17

Total Pages: 336

ISBN-13: 0300175094

DOWNLOAD EBOOK

"This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.