Presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning Applications to physics, engineering, and economics Ideal for use at the junior and senior undergraduate level, with wide appeal to students, teachers, professional mathematicians, and puzzle enthusiasts
This book reports recent major advances in automated reasoning in geometry. The authors have developed a method and implemented a computer program which, for the first time, produces short and readable proofs for hundreds of geometry theorems.The book begins with chapters introducing the method at an elementary level, which are accessible to high school students; latter chapters concentrate on the main theme: the algorithms and computer implementation of the method.This book brings researchers in artificial intelligence, computer science and mathematics to a new research frontier of automated geometry reasoning. In addition, it can be used as a supplementary geometry textbook for students, teachers and geometers. By presenting a systematic way of proving geometry theorems, it makes the learning and teaching of geometry easier and may change the way of geometry education.
Mathematical Recreations and Essays W. W. Rouse Ball For nearly a century, this sparkling classic has provided stimulating hours of entertainment to the mathematically inclined. The problems posed here often involve fundamental mathematical methods and notions, but their chief appeal is their capacity to tease and delight. In these pages you will find scores of "recreations" to amuse you and to challenge your problem-solving faculties-often to the limit. Now in its 13th edition, Mathematical Recreations and Essays has been thoroughly revised and updated over the decades since its first publication in 1892. This latest edition retains all the remarkable character of the original, but the terminology and treatment of some problems have been updated and new material has been added. Among the challenges in store for you: Arithmetical and geometrical recreations; Polyhedra; Chess-board recreations; Magic squares; Map-coloring problems; Unicursal problems; Cryptography and cryptanalysis; Calculating prodigies; ... and more. You'll even find problems which mathematical ingenuity can solve but the computer cannot. No knowledge of calculus or analytic geometry is necessary to enjoy these games and puzzles. With basic mathematical skills and the desire to meet a challenge you can put yourself to the test and win. "A must to add to your mathematics library."-The Mathematics Teacher We are delighted to publish this classic book as part of our extensive Classic Library collection. Many of the books in our collection have been out of print for decades, and therefore have not been accessible to the general public. The aim of our publishing program is to facilitate rapid access to this vast reservoir of literature, and our view is that this is a significant literary work, which deserves to be brought back into print after many decades. The contents of the vast majority of titles in the Classic Library have been scanned from the original works. To ensure a high quality product, each title has been meticulously hand curated by our staff. Our philosophy has been guided by a desire to provide the reader with a book that is as close as possible to ownership of the original work. We hope that you will enjoy this wonderful classic work, and that for you it becomes an enriching experience.
Newtonian mechanics : dynamics of a point mass (1001-1108) - Dynamics of a system of point masses (1109-1144) - Dynamics of rigid bodies (1145-1223) - Dynamics of deformable bodies (1224-1272) - Analytical mechanics : Lagrange's equations (2001-2027) - Small oscillations (2028-2067) - Hamilton's canonical equations (2068-2084) - Special relativity (3001-3054).
Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction
Art gallery theorems and algorithms are so called because they relate to problems involving the visibility of geometrical shapes and their internal surfaces. This book explores generalizations and specializations in these areas. Among the presentations are recently discovered theorems on orthogonal polygons, polygons with holes, exterior visibility, visibility graphs, and visibility in three dimensions. The author formulates many open problems and offers several conjectures, providing arguments which may be followed by anyone familiar with basic graph theory and algorithms. This work may be applied to robotics and artificial intelligence as well as other fields, and will be especially useful to computer scientists working with computational and combinatorial geometry.