Introduction to Projective Geometry

Introduction to Projective Geometry

Author: C. R. Wylie

Publisher: Courier Corporation

Published: 2011-09-12

Total Pages: 578

ISBN-13: 0486141705

DOWNLOAD EBOOK

This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.


Perspectives on Projective Geometry

Perspectives on Projective Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 573

ISBN-13: 3642172865

DOWNLOAD EBOOK

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.


Projective Geometry

Projective Geometry

Author: Elisabetta Fortuna

Publisher: Springer

Published: 2016-12-17

Total Pages: 275

ISBN-13: 3319428241

DOWNLOAD EBOOK

This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Linear Algebra and Projective Geometry

Linear Algebra and Projective Geometry

Author: Reinhold Baer

Publisher: Courier Corporation

Published: 2012-06-11

Total Pages: 338

ISBN-13: 0486154661

DOWNLOAD EBOOK

Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. 1952 edition.


Lectures on Curves, Surfaces and Projective Varieties

Lectures on Curves, Surfaces and Projective Varieties

Author: Mauro Beltrametti

Publisher: European Mathematical Society

Published: 2009

Total Pages: 512

ISBN-13: 9783037190647

DOWNLOAD EBOOK

This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.


Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry

Author: Dirk J. Struik

Publisher: Courier Corporation

Published: 2011-10-24

Total Pages: 306

ISBN-13: 0486485951

DOWNLOAD EBOOK

This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.


Projective Geometry

Projective Geometry

Author: Albrecht Beutelspacher

Publisher: Cambridge University Press

Published: 1998-01-29

Total Pages: 272

ISBN-13: 9780521483643

DOWNLOAD EBOOK

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.


Geometry: A Comprehensive Course

Geometry: A Comprehensive Course

Author: Dan Pedoe

Publisher: Courier Corporation

Published: 2013-04-02

Total Pages: 466

ISBN-13: 0486131734

DOWNLOAD EBOOK

Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.