A Study of Low Density Parity-Check Codes Using Systematic Repeat-Accumulate Codes

A Study of Low Density Parity-Check Codes Using Systematic Repeat-Accumulate Codes

Author:

Publisher:

Published: 2015

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK

Low Density Parity-Check, or LDPC, codes have been a popular error correction choice in the recent years. Its use of soft-decision decoding through a message-passing algorithm and its channel-capacity approaching performance has made LDPC codes a strong alternative to that of Turbo codes. However, its disadvantages, such as encoding complexity, discourages designers from implementing these codes. This thesis will present a type of error correction code which can be considered as a subset of LDPC codes. These codes are called Repeat-Accumulate codes and are named such because of their encoder structure. These codes is seen as a type of LDPC codes that has a simple encoding method similar to Turbo codes. What makes these codes special is that they can have a simple encoding process and work well with a soft-decision decoder. At the same time, RA codes have been proven to be codes that will work well at short to medium lengths if they are systematic. Therefore, this thesis will argue that LDPC codes can avoid some of its encoding disadvantage by becoming LDPC codes with systematic RA codes. This thesis will also show in detail how RA codes are good LDPC codes by comparing its bit error performance against other LDPC simulation results tested at short to medium code lengths and with different LDPC parity-check matrix constructions. With an RA parity-check matrix describing our LDPC code, we will see how changing the interleaver structure from a random construction to that of a structured can lead to improved performance. Therefore, this thesis will experiment using three different types of interleavers which still maintain the simplicity of encoding complexity of the encoder but at the same time show potential improvement of bit error performance compared to what has been previously seen with regular LDPC codes.


Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics

Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics

Author: Tarek Sobh

Publisher: Springer Science & Business Media

Published: 2008-08-15

Total Pages: 597

ISBN-13: 1402087373

DOWNLOAD EBOOK

Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking. Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics includes selected papers form the conference proceedings of the International Conference on Industrial Electronics, Technology and Automation (IETA 2007) and International Conference on Telecommunications and Networking (TeNe 07) which were part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2007).


Design of Rate-compatible Structured Low-density Parity-check Codes

Design of Rate-compatible Structured Low-density Parity-check Codes

Author: Jaehong Kim

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The main objective of our research is to design practical low-density parity-check (LDPC) codes which provide a wide range of code rates in a rate-compatible fashion. To this end, we first propose a rate-compatible puncturing algorithm for LDPC codes at short block lengths (up to several thousand symbols). The proposed algorithm is based on the claim that a punctured LDPC code with a smaller level of recoverability has better performance. The proposed algorithm is verified by comparing performance of intentionally punctured LDPC codes (using the proposed algorithm) with randomly punctured LDPC codes. The intentionally punctured LDPC codes show better bit error rate (BER) performances at practically short block lengths. Even though the proposed puncturing algorithm shows excellent performance, several problems are still remained for our research objective. First, how to design an LDPC code of which structure is well suited for the puncturing algorithm. Second, how to provide a wide range of rates since there is a puncturing limitation with the proposed puncturing algorithm. To attack these problems, we propose a new class of LDPC codes, called efficiently-encodable rate-compatible (E2RC) codes, in which the proposed puncturing algorithm concept is imbedded. The E2RC codes have several strong points. First, the codes can be efficiently encoded. We present low-complexity encoder implementation with shift-register circuits. In addition, we show that a simple erasure decoder can also be used for the linear-time encoding of these codes. Thus, we can share a message-passing decoder for both encoding and decoding in transceiver systems that require an encoder/decoder pair. Second, we show that the non-systematic parts of the parity-check matrix are cycle-free, which ensures good code characteristics. Finally, the E2RC codes having a systematic rate-compatible puncturing structure show better puncturing performance than any other LDPC codes in all ranges of code rates.


Error-Correction Coding and Decoding

Error-Correction Coding and Decoding

Author: Martin Tomlinson

Publisher: Springer

Published: 2017-02-21

Total Pages: 527

ISBN-13: 3319511033

DOWNLOAD EBOOK

This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.


Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015

Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015

Author: Ahmed El Oualkadi

Publisher: Springer

Published: 2016-04-05

Total Pages: 547

ISBN-13: 3319303015

DOWNLOAD EBOOK

This volume presents the first part of the proceedings of the Mediterranean Conference on Information & Communication Technologies (MedICT 2015), which was held at Saidia, Morocco during 7–9 May, 2015. MedICT provides an excellent international forum to the researchers and practitioners from both academia as well as industry to meet and share cutting-edge development. The conference has also a special focus on enabling technologies for societal challenges, and seeks to address multidisciplinary challenges in Information & Communication Technologies such as health, demographic change, wellbeing, security and sustainability issues. The proceedings publish high quality papers which are closely related to the various theories, as well as emerging and practical applications of particular interest to the ICT community. This first volume provides a compact yet broad view of recent developments in devices, technologies and processing, and covers recent research areas in the field including Microwave Devices and Printed Antennas, Advances in Optical and RF Devices and Applications, Signal Processing and Information Theory, Wireless and Optical Technologies and Techniques, Computer Vision, Optimization and Modeling in Wireless Communication Systems, Modeling, Identification and Biomedical Signal Processing, Photovoltaic Cell & Systems, RF Devices and Antennas for Wireless Applications, RFID, Ad Hoc and Networks Issues.