A Beginner's Guide to Data Agglomeration and Intelligent Sensing

A Beginner's Guide to Data Agglomeration and Intelligent Sensing

Author: Amartya Mukherjee

Publisher: Academic Press

Published: 2020-02-19

Total Pages: 199

ISBN-13: 0128203455

DOWNLOAD EBOOK

A Beginners Guide to Data Agglomeration and Intelligent Sensing provides an overview of the Sensor Cloud Platform, Converge-casting, and Data Aggregation in support of intelligent sensing and relaying of information. The book begins with a brief introduction on sensors and transducers, giving readers insight into the various types of sensors and how one can work with them. In addition, it gives several real-life examples to help readers properly understand concepts. An overview of concepts such as wireless sensor networks, cloud platforms, and device-to-cloud and sensor cloud architecture are explained briefly, as is data gathering in wireless sensor networks and aggregation procedures. Final sections explore how to process gathered data and relay the data in an intelligent way, including concepts such as supervised and unsupervised learning, software defined networks, sensor data mining and smart systems. - Presents the latest advances in data agglomeration for intelligent sensing - Discusses the basic concepts of sensors, real-life applications of sensors and systems, the protocols and applications of wireless sensor networks, the methodology of sensor data accumulation, and real-life applications of Intelligent Sensor Networks - Provides readers with an easy-to-learn and understand introduction to the concepts of the cloud platform, Sensor Cloud and Machine Learning


The Data Science Design Manual

The Data Science Design Manual

Author: Steven S. Skiena

Publisher: Springer

Published: 2017-07-01

Total Pages: 456

ISBN-13: 3319554441

DOWNLOAD EBOOK

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)


The Sciences of the Artificial, reissue of the third edition with a new introduction by John Laird

The Sciences of the Artificial, reissue of the third edition with a new introduction by John Laird

Author: Herbert A. Simon

Publisher: MIT Press

Published: 2019-08-13

Total Pages: 256

ISBN-13: 0262537532

DOWNLOAD EBOOK

Herbert Simon's classic work on artificial intelligence in the expanded and updated third edition from 1996, with a new introduction by John E. Laird. Herbert Simon's classic and influential The Sciences of the Artificial declares definitively that there can be a science not only of natural phenomena but also of what is artificial. Exploring the commonalities of artificial systems, including economic systems, the business firm, artificial intelligence, complex engineering projects, and social plans, Simon argues that designed systems are a valid field of study, and he proposes a science of design. For this third edition, originally published in 1996, Simon added new material that takes into account advances in cognitive psychology and the science of design while confirming and extending the book's basic thesis: that a physical symbol system has the necessary and sufficient means for intelligent action. Simon won the Nobel Prize for Economics in 1978 for his research into the decision-making process within economic organizations and the Turing Award (considered by some the computer science equivalent to the Nobel) with Allen Newell in 1975 for contributions to artificial intelligence, the psychology of human cognition, and list processing. The Sciences of the Artificial distills the essence of Simon's thought accessibly and coherently. This reissue of the third edition makes a pioneering work available to a new audience.


Machine Learning Algorithms

Machine Learning Algorithms

Author: Giuseppe Bonaccorso

Publisher: Packt Publishing Ltd

Published: 2017-07-24

Total Pages: 352

ISBN-13: 1785884514

DOWNLOAD EBOOK

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.


Bayesian Networks

Bayesian Networks

Author: Olivier Pourret

Publisher: John Wiley & Sons

Published: 2008-04-30

Total Pages: 446

ISBN-13: 9780470994542

DOWNLOAD EBOOK

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.


The Craft and Science of Coffee

The Craft and Science of Coffee

Author: Britta Folmer

Publisher: Academic Press

Published: 2016-12-16

Total Pages: 558

ISBN-13: 0128035587

DOWNLOAD EBOOK

The Craft and Science of Coffee follows the coffee plant from its origins in East Africa to its current role as a global product that influences millions of lives though sustainable development, economics, and consumer desire.For most, coffee is a beloved beverage. However, for some it is also an object of scientifically study, and for others it is approached as a craft, both building on skills and experience. By combining the research and insights of the scientific community and expertise of the crafts people, this unique book brings readers into a sustained and inclusive conversation, one where academic and industrial thought leaders, coffee farmers, and baristas are quoted, each informing and enriching each other.This unusual approach guides the reader on a journey from coffee farmer to roaster, market analyst to barista, in a style that is both rigorous and experience based, universally relevant and personally engaging. From on-farming processes to consumer benefits, the reader is given a deeper appreciation and understanding of coffee's complexity and is invited to form their own educated opinions on the ever changing situation, including potential routes to further shape the coffee future in a responsible manner. - Presents a novel synthesis of coffee research and real-world experience that aids understanding, appreciation, and potential action - Includes contributions from a multitude of experts who address complex subjects with a conversational approach - Provides expert discourse on the coffee calue chain, from agricultural and production practices, sustainability, post-harvest processing, and quality aspects to the economic analysis of the consumer value proposition - Engages with the key challenges of future coffee production and potential solutions


Google Earth Engine Applications

Google Earth Engine Applications

Author: Lalit Kumar

Publisher: MDPI

Published: 2019-04-23

Total Pages: 420

ISBN-13: 3038978841

DOWNLOAD EBOOK

In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.


Applications of Robotics in Industry Using Advanced Mechanisms

Applications of Robotics in Industry Using Advanced Mechanisms

Author: Janmenjoy Nayak

Publisher: Springer Nature

Published: 2019-09-03

Total Pages: 417

ISBN-13: 3030302717

DOWNLOAD EBOOK

This book shares important findings on the application of robotics in industry using advanced mechanisms, including software and hardware. It presents a collection of recent trends and research on various advanced computing paradigms such as soft computing, robotics, smart automation, power control, and uncertainty analysis. The book constitutes the proceedings of the 1st International Conference on Application of Robotics in Industry using Advanced Mechanisms (ARIAM2019), which offered a platform for sharing original research findings, presenting innovative ideas and applications, and comparing notes on various aspects of robotics. The contributions highlight the latest research and industrial applications of robotics, and discuss approaches to improving the smooth functioning of industries. Moreover, they focus on designing solutions for complex engineering problems and designing system components or processes to meet specific needs, with due considerations for public health and safety, including cultural, societal, and environmental considerations. Taken together, they offer a valuable resource for researchers, scientists, engineers, professionals and students alike.


Machine Learning Algorithms and Applications

Machine Learning Algorithms and Applications

Author: Mettu Srinivas

Publisher: John Wiley & Sons

Published: 2021-08-10

Total Pages: 372

ISBN-13: 1119769248

DOWNLOAD EBOOK

Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.