By forming the link between the road surface and the vehicle, the chassis plays a key role in enhancing vehicle dynamics and ride comfort. With its control systems, it provides the basis for the further development of driver assistance systems which support the driver in the task ofdriving the vehicle. This applies to an even greater extent to autonomous vehicles. Electromechanical steering and steerby-wire systems are one solution available. At the sametime, the brake system as a safety component needs to be developed in such a way that it fulfills the requirements of powertrain hybridization and electrification.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security,and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security, and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future. Contents New Chassis Systems.- Handling and Vehicle Dynamics.- NVH – Acoustics and Vibration in the Chassis.- Smart Chassis, ADAS, and Autonomous Driving.- Lightweight Design.- Innovative Brake Systems.- Brakes and the Environment.- Electronic Chassis Systems.- Virtual Chassis Development and Homologation.- Innovative Steering Systems and Steer-by-Wire.- Development Process, System Properties and Architecture.- Innovations in Tires and Wheels. Target audiences Automotive engineers and chassis specialists as well as students looking for state-of-the-art information regarding their field of activity - Lecturers and instructors at universities and universities of applied sciences with the main subject of automotive engineering - Experts, researchers and development engineers of the automotive and the supplying industry Publisher ATZ live stands for top quality and a high level of specialist information and is part of Springer Nature, one of the leading publishing groups worldwide for scientific, educational and specialist literature. Partner TÜV SÜD is an international leading technical service organisation catering to the industry, mobility and certification segment.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security, and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future. Contents Driving Simulators.- Innovative Chassis Systems.- Automated Driving and Racing.- New Methods and Systems.- Suspension and Ride Comfort.- All-Wheel Steering.- Future Brake Systems and Testing Technology.- Innovations in Tires and Wheels. Target audiences Automotive engineers and chassis specialists as well as students looking for state-of-the-art information regarding their field of activity - Lecturers and instructors at universities and universities of applied sciences with the main subject of automotive engineering - Experts, researchers and development engineers of the automotive and the supplying industry. Publisher ATZ live stands for top quality and a high level of specialist information and is part of Springer Nature, one of the leading publishing groups worldwide for scientific, educational and specialist literature. Partner TÜV SÜD is an international leading technical service organisation catering to the industry, mobility and certification segment.
The book summarizes the main results of the the project ENABLE-S3 covering the following aspects: validation and verification technology bricks (collection and selection of test scenarios, test executions envionments incl. respective models, assessment of test results), evaluation of technology bricks in selected use cases and standardization and related initiatives. ENABLE-S3 is an industry-driven EU-project and aspires to substitute todays' cost-intensive verification and validation efforts by more advanced and efficient methods. In addition, the book includes articles about complementary international activities in order to highlight the global importance of the topic and to cover the wide range of aspects that needs to be covered at a global scale.
The motor vehicle technology covered in this book has become in the more than 125 years of its history in many aspects an extremely complex and, in many areas of engineering science . Motor vehicles must remain functional under harsh environmental conditions and extreme continuous loads and must also be reliably brought into a safe state even in the event of a failure by a few trained operators. The automobile is at the same time a mass product, which must be produced in millions of pieces and at extremely low cost. In addition to the fundamentals of current vehicle systems, the book also provides an overview of future developments such as, for example, in the areas of electromobility, alternative drives and driver assistance systems. The basis for the book is a series of lectures on automotive engineering, which has been offered by the first-named author at the University of Duisburg-Essen for many years. Starting from classical systems in the automobile, the reader is given a systemic view of modern motor vehicles. In addition to the pure basic function, the modeling of individual (sub-) systems is also discussed. This gives the reader a deep understanding of the underlying principles. In addition, the book with the given models provides a basis for the practical application in the area of simulation technology and thus achieves a clear added value against books, which merely explain the function of a system without entering into the modeling. On the basis of today's vehicle systems we will continue to look at current and future systems. In addition to the state-of-the-art, the reader is thus taught which topics are currently dominant in research and which developments can be expected for the future. In particular, a large number of practical examples are provided directly from the vehicle industry. Especially for students of vehicle-oriented study courses and lectures, the book thus enables an optimal preparation for possible future fields of activity.
This book gathers selected high-quality research papers presented at the Seventh International Congress on Information and Communication Technology, held at Brunel University, London, on February 21–24, 2022. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of Things (IoT) and e-mining. Written by respected experts and researchers working on ICT, the book offers a valuable asset for young researchers involved in advanced studies. The work is presented in four volumes.
Connected and automated vehicles have revolutionized the way we move, granting new services on roads. This Special Issue collects contributions that address reliable and ultra-low-latency vehicular applications that range from advancements at the access layer, such as using the visible light spectrum to accommodate ultra-low-latency applications, to data dissemination solutions. Further, articles discuss edge computing, neural network-based techniques, and the use of reconfigurable intelligent surfaces (RIS) to boost throughput and enhance coverage.
This book contains and summarizes research carried out within the DFG Priority Programme 1897: "Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation". The contributions help reduce unwanted vibrations by developing novel approaches for influencing them and lead to a “calm, smooth and smart” behaviour of technical units. “Calm” represents the demand to avoid or at least to severely reduce unwanted noise generated by technical installations. “Smooth” ensures a still comfortable and jerk-free operation of them. Finally, “smart” means that the introduced damping devices not only help to achieve the desired vibrational behaviour of the overall technical systems, but also that they take over additional functional tasks. The results presented in this volume summarize the state-of-the-art and provide motivation for future research. The book is intended for experienced researchers as well as for doctoral and post-doctoral students in engineering, mathematics and physics, as well as industrial researchers interested in the field.