This book basically caters to the needs of undergraduates and graduates physics students in the area of classical physics, specially Classical Mechanics and Electricity and Electromagnetism. Lecturers/ Tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in USA, U.K., and other countries. The book is divided into 15 chapters, each chapter beginning with a brief but adequate summary and necessary formulas and Line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.
This book is targeted mainly to the undergraduate students of USA, UK and other European countries, and the M. Sc of Asian countries, but will be found useful for the graduate students, Graduate Record Examination (GRE), Teachers and Tutors. This is a by-product of lectures given at the Osmania University, University of Ottawa and University of Tebrez over several years, and is intended to assist the students in their assignments and examinations. The book covers a wide spectrum of disciplines in Modern Physics, and is mainly based on the actual examination papers of UK and the Indian Universities. The selected problems display a large variety and conform to syllabi which are currently being used in various countries. The book is divided into ten chapters. Each chapter begins with basic concepts containing a set of formulae and explanatory notes for quick reference, followed by a number of problems and their detailed solutions. The problems are judiciously selected and are arranged section-wise. The so- tions are neither pedantic nor terse. The approach is straight forward and step-- step solutions are elaborately provided. More importantly the relevant formulas used for solving the problems can be located in the beginning of each chapter. There are approximately 150 line diagrams for illustration. Basic quantum mechanics, elementary calculus, vector calculus and Algebra are the pre-requisites.
This textbook aims to provide a clear and concise set of lectures that take one from the introduction and application of Newton's laws up to Hamilton's principle of stationary action and the lagrangian mechanics of continuous systems. An extensive set of accessible problems enhances and extends the coverage.It serves as a prequel to the author's recently published book entitled Introduction to Electricity and Magnetism based on an introductory course taught sometime ago at Stanford with over 400 students enrolled. Both lectures assume a good, concurrent, course in calculus and familiarity with basic concepts in physics; the development is otherwise self-contained.A good introduction to the subject allows one to approach the many more intermediate and advanced texts with better understanding and a deeper sense of appreciation that both students and teachers alike can share.
Newtonian mechanics : dynamics of a point mass (1001-1108) - Dynamics of a system of point masses (1109-1144) - Dynamics of rigid bodies (1145-1223) - Dynamics of deformable bodies (1224-1272) - Analytical mechanics : Lagrange's equations (2001-2027) - Small oscillations (2028-2067) - Hamilton's canonical equations (2068-2084) - Special relativity (3001-3054).
This text provides a pedagogical tour through mechanics from Newton to Einstein with detailed explanations and a large number of worked examples. From the very beginning relativity is kept in mind, along with its relation to concepts of basic mechanics, such as inertia, escape velocity, Newton's potential, Kepler motion and curvature. The Lagrange and Hamilton formalisms are treated in detail, and extensive applications to central forces and rigid bodies are presented. After consideration of the motivation of relativity, the essential tensor calculus is developed, and thereafter Einstein's equation is solved for special cases with explicit presentation of calculational steps. The combined treatment of classical mechanics and relativity thus enables the reader to see the connection between Newton's gravitational potential, Kepler motion and Einstein's corrections, as well as diverse aspects of mechanics. The text addresses students and others pursuing a course in classical mechanics, as well as those interested in a detailed course on relativity.
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.
Essential Advanced Physics (EAP) is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. Written for graduate and advanced undergraduate students, the goal of this series is to provide readers with a knowledge base necessary for professional work in physics, be that theoretical or experimental, fundamental or applied research. From the formal point of view, it satisfies typical PhD basic course requirements at major universities. Selected parts of the series may also be valuable for graduate students and researchers in allied disciplines, including astronomy, chemistry, materials science, and mechanical, electrical, computer and electronic engineering. The EAP series is focused on the development of problem-solving skills. The following features distinguish it from other graduate-level textbooks: Concise lecture notes ( 250 pages per semester) Emphasis on simple explanations of the main concepts, ideas and phenomena of physics Sets of exercise problems, with detailed model solutions in separate companion volumes Extensive cross-referencing between the volumes, united by common style and notation Additional sets of test problems, freely available to qualifying faculty This volume, Classical Mechanics: Problems with solutions contains detailed model solutions to the exercise problems formulated in the companion Lecture notes volume. In many cases, the solutions include result discussions that enhance the lecture material. For the reader's convenience, the problem assignments are reproduced in this volume.
Gregory's Classical Mechanics is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author's clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples, while problem sets provide plenty of practice for understanding and technique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanics where they are proved and applied to problem solving. They reappear in analytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminating in Noether's theorem.
Volume II of Alan Muir's trilogy GOLDEN GIRLS published before 1923. It may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification.