Wood is a natural building material: if used in building elements, it can play structural, functional and aesthetic roles at the same time. The use of wood in buildings, which goes back to the oldest of times, is now experiencing a period of strong expansion in virtue of the sustainable dimension of wood buildings from the environmental, economic and social standpoints. However, its use as an engineering material calls for constant development of theoretical and experimental research to respond properly to the issues involved in this. In the single chapters written by experts in different fields, the book aims to contribute to knowledge in the application of wood in the building industry.
Timber construction is one of the most prevalent methods of constructing buildings in North America and an increasingly significant method of construction in Europe and the rest of the world. Timber Engineering deals not only with the structural aspects of timber construction, structural components, joints and systems based on solid timber and engineered wood products, but also material behaviour and properties on a wood element level. Produced by internationally renowned experts in the field, this book represents the state of the art in research on the understanding of the material behaviour of solid wood and engineered wood products. There is no comparable compendium currently available on the topic - the subjects represented include the most recent phenomena of timber engineering and the newest development of practice-related research. Grouped into three different sections, 'Basic properties of wood-based structural elements', 'Design aspects on timber structures' and 'Joints and structural assemblies', this book focuses on key issues in the understanding of: timber as a modern engineered construction material with controlled and documented properties the background for design of structural systems based on timber and engineered wood products the background for structural design of joints in structural timber systems Furthermore, this invaluable book contains advanced teaching material for all technical schools and universities involved in timber engineering. It also provides an essential resource for timber engineering students and researchers, as well as practicing structural and civil engineers.
All the information, formulas, procedures, and examples that you need to design virtually any type of wood structure of structural wood component - that's what you get in this indispensable handbook.
Basic Civil Engineering is designed to enrich the preliminary conceptual knowledge about civil engineering to the students of non-civil branches of engineering. The coverage includes materials for construction, building construction, basic surveying and other major topics like environmental engineering, geo-technical engineering, transport traffic and urban engineering, irrigation & water supply engineering and CAD.
The construction of buildings and structures relies on having a thorough understanding of building materials. Without this knowledge it would not be possible to build safe, efficient and long-lasting buildings, structures and dwellings. Building materials in civil engineering provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries.The book begins with an introductory chapter describing the basic properties of building materials. Further chapters cover the basic properties of building materials, air hardening cement materials, cement, concrete, building mortar, wall and roof materials, construction steel, wood, waterproof materials, building plastics, heat-insulating materials and sound-absorbing materials and finishing materials. Each chapter includes a series of questions, allowing readers to test the knowledge they have gained. A detailed appendix gives information on the testing of building materials.With its distinguished editor and eminent editorial committee, Building materials in civil engineering is a standard introductory reference book on the complete range of building materials. It is aimed at students of civil engineering, construction engineering and allied courses including water supply and drainage engineering. It also serves as a source of essential background information for engineers and professionals in the civil engineering and construction sector. - Provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries - Explores the basic properties of building materials featuring air hardening cement materials, wall and roof materials and sound-absorbing materials - Each chapter includes a series of questions, allowing readers to test the knowledge they have gained
* The best-selling text and reference on wood structure design * Incorporates the latest National Design Specifications, the 2003 International Building Code and the latest information on wind and seismic loads
A simple, practical, and concise guide to timber design To fully understand structural design in wood, it is not sufficient to consider the individual components in isolation. Structural Wood Design: A Practice-Oriented Approach Using the ASD Method offers an integrative approach to structural wood design that considers the design of the individual wood members in the context of the complete wood structure so that all of the structural components and connectors work together in providing strength. Holistic, practical, and code-based, this text provides the reader with knowledge of all the essentials of structural wood design: Wood structural elements and systems that occur in wood structures Structural loads—dead, live, snow, wind, and seismic—and how to calculate loads acting on typical wood structures Glued-laminated lumber and allowable stresses for sawn lumber and Glulam The design and analysis of joists and girders Floor vibrations The design of wood members subjected to axial and bending loads Roof and floor sheathing and horizontal diaphrams Exterior wall sheathing and wood shear walls The design of connections and how to use the connection capacity tables in the NDS code Several easy-to-use design aids for the preliminary sizing of joists, studs, and columns In keeping with its hallmark holistic and practice-oriented approach, the book culminates in a complete building design case study that brings all the elements together in a total building system design. Conforming throughout to the 2005 National Design Specification (NDS) for Wood, Structural Wood Design will prepare students for applying the fundamentals of structural wood design to typical projects, and will serve as a handy resource for practicing engineers, architects, and builders in their everyday work.
This text provides a concise and practical guide to timber design, using both the Allowable Stress Design and the Load and Resistance Factor Design methods. It suits students in civil, structural, and construction engineering programs as well as engineering technology and architecture programs, and also serves as a valuable resource for the practicing engineer. The examples based on real-world design problems reflect a holistic view of the design process that better equip the reader for timber design in practice. This new edition now includes the LRFD method with some design examples using LRFD for joists, girders and axially load members. is based on the 2015 NDS and 2015 IBC model code. includes a more in-depth discussion of framing and framing systems commonly used in practice, such as, metal plate connected trusses, rafter and collar tie framing, and pre-engineered framing. includes sample drawings, drawing notes and specifications that might typically be used in practice. includes updated floor joist span charts that are more practical and are easy to use. includes a chapter on practical considerations covering topics like flitch beams, wood poles used for footings, reinforcement of existing structures, and historical data on wood properties. includes a section on long span and high rise wood structures includes an enhanced student design project
Provides updated, comprehensive, and practical information and guidelines on aspects of building design and construction, including materials, methods, structural types, components, and costs, and management techniques.
The prime purpose of this book is to serve as a design is of considerable value in helping the classroom text for the engineering or architec student make the transition from the often sim ture student. It will, however, also be useful to plistic classroom exercises to problems of the designers who are already familiar with design real world. Problems for solution by the student in other materials (steel, concrete, masonry) but follow the same idea. The first problems in each need to strengthen, refresh, or update their capa subject are the usual textbook-type problems, bility to do structural design in wood. Design but in most chapters these are followed by prob principles for various structural materials are lems requiring the student to make structural similar, but there are significant differences. planning decisions as well. The student may be This book shows what they are. required, given a load source, to find the magni The book has features that the authors believe tude of the applied loads and decide upon a set it apart from other books on wood structural grade of wood. Given a floor plan, the student design. One of these is an abundance of solved may be required to determine a layout of struc examples. Another is its treatment of loads. This tural members. The authors have used most of book will show how actual member loads are the problems in their classes, so the problems computed. The authors have found that students, have been tested.