This classic on games and how to play them intelligently is being re-issued in a new, four volume edition. This book has laid the foundation to a mathematical approach to playing games. The wise authors wield witty words, which wangle wonderfully winning ways. In Volume 1, the authors do the Spade Work, presenting theories and techniques to "dissect" games of varied structures and formats in order to develop winning strategies.
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 4, the authors present a Diamond of a find, covering one-player games such as Solitaire.
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 2, the authors have a Change of Heart, bending the rules established in Volume 1 to apply them to games such as Cut-cake and Loopy Hackenbush. From the Table of Contents: - If You Can't Beat 'Em, Join 'Em! - Hot Bottles Followed by Cold Wars - Games Infinite and Indefinite - Games Eternal--Games Entailed - Survival in the Lost World
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 3, the authors examine Games played in Clubs, giving case studies for coin and paper-and-pencil games, such as Dots-and-Boxes and Nimstring. From the Table of Contents: - Turn and Turn About - Chips and Strips - Dots-and-Boxes - Spots and Sprouts - The Emperor and His Money - The King and the Consumer - Fox and Geese; Hare and Hounds - Lines and Squares
Combinatorial game theory is the study of two-player games with no hidden information and no chance elements. The theory assigns algebraic values to positions in such games and seeks to quantify the algebraic and combinatorial structure of their interactions. Its modern form was introduced thirty years ago, with the publication of the classic Winning Ways for Your Mathematical Plays by Berlekamp, Conway, and Guy, and interest has rapidly increased in recent decades. This book is a comprehensive and up-to-date introduction to the subject, tracing its development from first principles and examples through many of its most recent advances. Roughly half the book is devoted to a rigorous treatment of the classical theory; the remaining material is an in-depth presentation of topics that appear for the first time in textbook form, including the theory of misère quotients and Berlekamp's generalized temperature theory. Packed with hundreds of examples and exercises and meticulously cross-referenced, Combinatorial Game Theory will appeal equally to students, instructors, and research professionals. More than forty open problems and conjectures are mentioned in the text, highlighting the many mysteries that still remain in this young and exciting field. Aaron Siegel holds a Ph.D. in mathematics from the University of California, Berkeley and has held positions at the Mathematical Sciences Research Institute and the Institute for Advanced Study. He was a partner at Berkeley Quantitative, a technology-driven hedge fund, and is presently employed by Twitter, Inc.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class that includes both real numbers and ordinal numbers: surreal numbers. The second edition presents developments in mathematical game theory, focusing on surreal numbers and the additive theory of partizan games.
The ancient game of Go is one of the less obvious candidates for mathematical analysis. With the development of new concepts in combinatorial game theory, the authors have been able to analyze Go games and find solutions to real endgame problems that have stumped professional Go players. Go players with an interest in mathematics and mathematicians
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 3, the authors examine Games played in Clubs, giving case studies for coin and paper-and-pencil games, such as Dots-and-Boxes and Nimstring. From the Table of Contents: - Turn and Turn About - Chips and Strips - Dots-and-Boxes - Spots and Sprouts - The Emperor and His Money - The King and the Consumer - Fox and Geese; Hare and Hounds - Lines and Squares