Philosophy of physics is concerned with the deepest theories of modern physics - quantum theory, our theories of space, time and symmetry, and thermal physics - and their strange, even bizarre conceptual implications. This book explores the core topics in philosophy of physics, and discusses their relevance for both scientists and philosophers.
In this, the second volume in an important new series presenting core concepts across a range of critical areas of human knowledge, author Joanne Baker unravels the complexities of 20th-century scientific theory for a general readership. From Hubble's law to the Pauli exclusion principle, and from Schrodinger's cat to Heisenberg's uncertainty principle, she explains ideas at the cutting-edge of scientific enquiry, making them comprehensible and accessible to the layperson.
Scale -- Space and time -- Energy and matter -- The quantum world -- Thermodynamics and the arrow of time -- Unification -- The future of physics -- The usefulness of physics -- Thinking like a physicist.
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
From the foundations of Newtonian physics to atomic and nuclear theories, this clearly explained text is a perfect guide for anyone who wants to be knowledgeable about standard college physics topics or needs a refresher. As it navigates through the material, it provides readers with the information necessary to define and understand physics concepts. Readers will also develop the ability to comprehend basic physical laws that govern our universe, as well as skills to apply the theoretical knowledge to solving conceptual and quantitative problems. This book was designed for those who want to develop a better understanding of our physical universe, as well as the relationships between different laws of physics. The content is focused on an essential review of all major physics theories, principles, and experimental approaches. You will learn about kinematics and dynamics, statics and equilibrium, foundations of gravity, energy, work, sound and light, electricity and magnetism, basic principles of atomic physics, as well as heat and thermodynamics. The book also describes all major topics covered in a standard college physics course and walks you through solving different types of problems. Created by highly qualified physics instructors with years of experience in applied physics, as well as in academic settings, this book educates and empowers readers, regardless of whether they took college physics or not, helping them develop and increase their understanding of how our universe works.
"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post
From the celebrated author of the best-selling Physics for Future Presidents comes “a provocative, strongly argued book on the fundamental nature of time” (Lee Smolin). You are reading the word "now" right now. But what does that mean? "Now" has bedeviled philosophers, priests, and modern-day physicists from Augustine to Einstein and beyond. In Now, eminent physicist Richard A. Muller takes up the challenge. He begins with remarkably clear explanations of relativity, entropy, entanglement, the Big Bang, and more, setting the stage for his own revolutionary theory of time, one that makes testable predictions. Muller’s monumental work will spark major debate about the most fundamental assumptions of our universe, and may crack one of physics’ longest-standing enigmas.
Explore the laws and theories of physics in this accessible introduction to the forces that shape our universe, our planet, and our everyday lives. Using a bold, graphics-led approach, The Physics Book sets out more than 80 of the key concepts and discoveries that have defined the subject and influenced our technology since the beginning of time. With the focus firmly on unpacking the thought behind each theory—as well as exploring when and how each idea and breakthrough came about—five themed chapters examine the history and developments in specific areas such as Light, Sound, and Electricity. Eureka moments abound: from Archimedes' bathtub discoveries about displacement and density, and Galileo's experiments with spheres falling from the Tower of Pisa, to Isaac Newton's apple and his conclusions about gravity and the laws of motion. You'll also learn about Albert Einstein's revelations about relativity; how the accidental discovery of cosmic microwave background radiation confirmed the Big Bang theory; the search for the Higgs boson particle; and why most of the universe is missing. If you've ever wondered exactly how physicists formulated—and proved—their abstract concepts, The Physics Book is the book for you. Series Overview: Big Ideas Simply Explained series uses creative design and innovative graphics along with straightforward and engaging writing to make complex subjects easier to understand. With over 7 million copies worldwide sold to date, these award-winning books provide just the information needed for students, families, or anyone interested in concise, thought-provoking refreshers on a single subject.
Physics for future world leaders Physics and Technology for Future Presidents contains the essential physics that students need in order to understand today's core science and technology issues, and to become the next generation of world leaders. From the physics of energy to climate change, and from spy technology to quantum computers, this is the only textbook to focus on the modern physics affecting the decisions of political leaders and CEOs and, consequently, the lives of every citizen. How practical are alternative energy sources? Can satellites really read license plates from space? What is the quantum physics behind iPods and supermarket scanners? And how much should we fear a terrorist nuke? This lively book empowers students possessing any level of scientific background with the tools they need to make informed decisions and to argue their views persuasively with anyone—expert or otherwise. Based on Richard Muller's renowned course at Berkeley, the book explores critical physics topics: energy and power, atoms and heat, gravity and space, nuclei and radioactivity, chain reactions and atomic bombs, electricity and magnetism, waves, light, invisible light, climate change, quantum physics, and relativity. Muller engages readers through many intriguing examples, helpful facts to remember, a fun-to-read text, and an emphasis on real-world problems rather than mathematical computation. He includes chapter summaries, essay and discussion questions, Internet research topics, and handy tips for instructors to make the classroom experience more rewarding. Accessible and entertaining, Physics and Technology for Future Presidents gives students the scientific fluency they need to become well-rounded leaders in a world driven by science and technology. Leading universities that have adopted this book include: Harvard Purdue Rice University University of Chicago Sarah Lawrence College Notre Dame Wellesley Wesleyan University of Colorado Northwestern Washington University in St. Louis University of Illinois - Urbana-Champaign Fordham University of Miami George Washington University Some images inside the book are unavailable due to digital copyright restrictions.
“YOU HAVE CHANGED MY LIFE” is a common refrain in the emails Walter Lewin receives daily from fans who have been enthralled by his world-famous video lectures about the wonders of physics. “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.